

ПРОГРАММИРУЕМЫЕ ЛОГИЧЕСКИЕ КОНТРОЛЛЕРЫ серии DVP

Общие сведения

Программируемые логические контроллеры серии DVP являются идеальным средством для построения высокоэффективных систем автоматического управления при минимальных затратах на приобретение оборудования и разработку системы.

Контроллеры способны работать в реальном масштабе времени и могут быть использованы как для построения узлов локальной автоматики, так и систем распределенного ввода-вывода с организацией обмена данными по RS-485 интерфейсу.

Для удобства отладки и написания программ разработчики предусмотрели пакет программирования, который не требует существенных ресурсов компьютера и является простым инструментом для всех категорий специалистов. Используются три языка программирования: LAD (релейно-контактная логика), IL (список инструкций), SFC (последовательные функциональные схемы).

Серия DVP объединяет в своем составе:

- 6 типов базовых модулей (ЦПУ), отличающихся объемами памяти, быстродействием, количеством встроенных входов-выходов, набором встроенных функций, возможностями расширения системы.
 - Широкий спектр модулей ввода-вывода дискретных и аналоговых сигналов.
 - 10 функциональных карт расширения, обеспечивающих дополнительные возможности.

Все модули выпускаются в пластиковых корпусах. Монтаж может выполняться на стандартную 35мм профильную шину или на плоскую поверхность. Соединения между модулями выполняются плоскими кабелями или встроенными разъемами.

Контроллеры серии DVP отвечают требованиям международных стандартов UL, CE. Производство DVP сертифицировано по международному стандарту ISO 9001.

Обзор процессорных модулей

DVP-SS

- Сверхкомпактная серия
- ЦПУ: 14 точек дискретного ввода/вывода (8DI + 6DO)
- Модули расширения на 8 и 16 точек ввода/вывода
- Модули аналогового ввода/вывода
- Два встроенных коммуникационных порта
- Большое количество инструкций
- Высокоскоростные входы/выходы
- Низкая стоимость

DVP-SA

- ЦПУ: 12 точек дискретного ввода/вывода (8DI + 4DO)
- Модули расширения общие с серией DVP-SS
- Объем памяти программ в 2 раза больше, чем в DVP-SS
- Регистров данных в 5 раз больше чем в DVP-SS
- Два встроенных потенциометра
- Два коммуникационных порта
- Большое количество инструкций
- Высокоскоростные входы/выходы

DVP-SX

- ЦПУ: 10 точек ввода/вывода (4DI + 2DO + 2AI + 2AO)
- Встроенный цифровой индикатор, отображающий значение заданного регистра
- Имеет такие же функции и характеристики как DVP-SA,
 плюс процессорный модуль имеет дополнительно 2
 аналоговых входа (12 бит) и 2 аналоговых выхода (12 бит)

DVP-ES

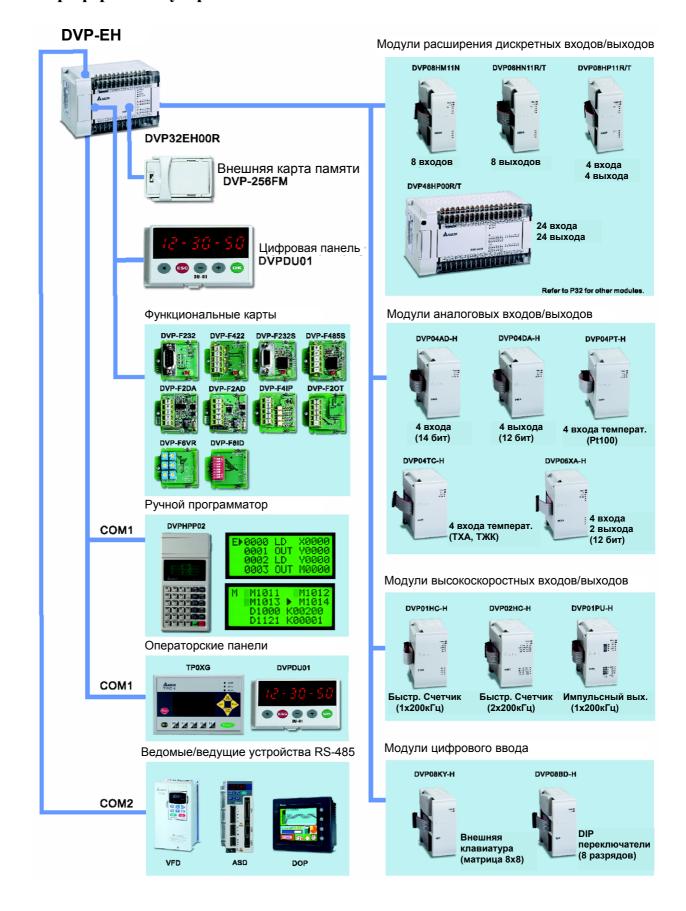
- ЦПУ: 14, 24, 32 и 64 точки дискретного ввода/вывода
- Множество модулей расширения с различными комбинациями дискретных точек ввода/вывода (8, 16, 24 и 32 входов/выходов)
- Два коммуникационных порта
- Большое количество инструкций
- Высокоскоростные входы/выходы
- Низкая стоимость

DVP-EX

- ЦПУ: 20 точек ввода/вывода (8DI + 6DO + 4AI + 2AO)
- Имеет такие же функции и характеристики, как DVP-ES, плюс процессорный модуль имеет дополнительно 4 аналоговых входа (10 бит) и 2 аналоговых выхода (8 бит)
- Низкая стоимость

DVP-EH

- ЦПУ: 16, 20, 32, 48, 64 и 80 точек дискретного ввода/вывода
- Модули расширения на 8, 16, 32 и 48 точек ввода/вывода
- Память программ: 16К; Память данных: 10 000 регистров
- Время выполнения базовой инструкции: 0.24 мкс
- 4 скоростных счетчика: до 200 кГц
- 2 импульсных выхода: до 200 кГц
- Большое количество периферийных устройств
- Удобные встроенные инструкции для управления позиционированием, для


работы с коммуникационными портами и с распределенными устройствами ввода/вывода

• Возможность расширения до 512 точек ввода/вывода

Краткие характеристики контроллеров DVP

DVP-	ES	EX	SS	SA	SX	EH
Питание ~220 B	+	+	-	-	-	+
Питание =24 В	+	+	+	+	+	-
Встроенный	-	_	-	+	-	+
потенциометр						
Переключатель RUN/STOP	-	-	+	+	+	+
Встроенные аналоговые вх./вых.	-	+	-	-	+	опция
Встроенные высоко-	+	+	+	+	+	+
Файловые регистры (слов)	-	-	-	1 600	1 600	10 000
Связь с другими модулями ЦПУ	-	-	-	+	+	+
Удаленные входы/выходы	-	-	+	+	+	+
Встроенный цифровой индикатор (2 разряда)	-	-	-	-	+	-
Внешняя карта памяти	-	-	-	-	-	опция
Часы реального времени	-	-	-	+	+	+
Тип памяти	EEPROM	EEPROM	EEPROM	SRAM + батарея	SRAM + батарея	SRAM + батарея
Память программы (слов)	4K	4K	4K	8K	8К	16K
Модули дискретных вх./вых. (DI/DO)	+	+	+	+	+	+
Модули аналоговых вх./вых. (AI/AO)	-	-	+	+	+	+
Модули скоростных вх./вых. (РІ/РО)	-	-	-	-	-	+
Модули цифрового ввода/вывода (NI/NO)	-	-	-	-	-	+

Периферийные устройства

DVP-ES/EX

Основные характеристики

DVP-ES/EX/SS

Элемент			Описание Примечание			
Метод выполнения программы		н программы	Циклическое сканирование с внешними и временными прерываниями			
Me	год обработки і	вх/вых	Групповое обновление (послобновления I/O	е инструкци	ии END) или по команде	
Вре	мя выполнения	инструкций	Основных – 3.927.6 мкс	Специальных - 10100мкс		
g _{or}	іки программир	Орания	LAD (релейно-контактные с		Включая шаговые	
			(список инструкций), SFC (с	функц. бл.)	инструкции	
	ьем памяти про		4 К слова или 3792 шагов		EEPROM	
	бор инструкций		32 основные инструкции (вк			
X	Входные реле		128 точек (X0 – X177)	Макс.256	Внешние входные сигналы	
Y	Выходные рел	ie	128 точек (Y0 – Y177)	точек	Внешние вых. сигналы	
	Внутренние	Общие	744(M0-M511, M768- M999)	Макс.		
M	реле	Энергонезав.	256 точек (М512-М767)	1280		
	реле	Специальные	280 точек (М1000-М1279)	точек		
		Инициализир.	10 точек (S0-S9)			
	Шаговые	Возвращ. в	10 точек (S10-S19)	Макс.	Используются в шаговых	
S	реле	нулев. точку	используются с инстр. IST	128	лестничных диаграммах	
	(энергонез.)	Общие	108 точек (S20-S127)	точек	1	
		Дискр. 100мс	64 точки (Т0-Т63)	Morro		
T	Таймеры	Дискр. 10мс	63 точки (Т64-Т126)	Макс. 128	M1028=ON – дискретн. 10мс M1028=OFF-дискретн. 100мс	
		Дискр. 1мс	1 точка (T127)	точек	-	
		Инкрементный (16 бит)	112 точек (С0-С111)	Макс. 128		
C	Счетчики	Инкр. (16 бит) энергонезавис.	16 точек (С112-С127)	точек		
	Счетчики	Инкр./декрем.	7 точек (С235-С244)	12	1 фаза, 1 вход	
		32 бит быстро- дествующий	3 точки (С246, С247, С249)	Макс. 13	1 фаза, 2 входа	
		энергонезавис.	3 точки (C251, C252, C254)	TO ICK	2 фазы, 2 входа	
		Общие	408 точек (D0-D407)	Макс.600		
	Регистры	Энергонезав.	192 точек (D408-D599)	точек	Могут использоваться как	
D	данных	Специальные	312 точек (D1000-D1311)	Макс.312	ячейки для хранения данных	
		Индексные	2 точки: E(=D1028), F(=D1029)	точек		
N	Для вложения	ых циклов	8 точек (N0-N7)		Точки управления вложенными циклами	
P	Для инструкц	ий CJ, CALL	64 точек (Р0-Р63)		Флаги для операторов перехода, подпрограмм	
		Внешние	4 точки (I001, I101, I201, I30	1)		
I	Прерывания	Временные	1 точка (I6xx = 10-99, дискр.	1 мс)	Флаги для подпрограмм обработки прерываний	
		Коммуникац.	1 точка (I150)			
К	Десятичные к	онстанты	K-32768 K32767 (16 битные операции) K-2147483648 K2147483647 (32 битные операции)			
Н	Н Шестнадцатеричные константы		H0000HFFFF (16-ти битные операции) H00000000HFFFFFFFF (32-х битные операции)			
Ком	имуникационны	іе порты	COM1: RS-232, COM2: RS-485 (может быть master и slave) COM1 и COM2 могут работать независимо			
Mo	дули расширен	ия (опция)	ES/EX имеют модули дискретного ввода/вывода (8 -32 точки). SS имеют дискретные и аналоговые (AD, DA, PT, TC, XA, RT) модули. Примечание: 8 аналоговых модулей максимально			

DVP-EH/SA/SX

	P-EH/SA/S2	<u>, </u>	SA/SX	ЕН	
	год выполнени	я программы			
			Циклическое сканирование с внешними и временными прерываниями Групповое обновление (после инструкции END) или по команде		
Me	год обработки і	ВХ/ВЫХ	обновления I/O		
	емя выполне-	Основных	3.927.6 мкс	0.24мкс	
	инструкций	Специальных	10100мкс	10100мкс	
	іки программи		LAD (релконт. схемы), IL (список		
Объ	ьем памяти про	граммы	7920 шагов (SRAM + батарея)	15872 шага (SRAM + батарея)	
Наб	бор инструкций	Í	32 основные инструкции и 168	32 основные инструкции и 187	
X	,		специальных 128 точек (X0 – X177)	специальных 256 точек (X0 – X377)	
Y	Входные реле Выходные реле		128 точек (ХО – Х177)	256 точек (ХО – ХЗ77)	
	Быходные ре.	Общие	512 точек (М0 - М511)	500 точек (М0 – М499)	
	Внутренние		2584 точки	2596 точек	
M	реле	Энергонезав.	(M512-M999, M2000-M4095)	(M500-M999, M2000-M4095)	
		Специальные	1000 точек (М1000-М1999)	1000 точек (М1000-М1999)	
		Инициализир.	10 точек (S0-S9)	10 точек (S0-S9)	
		Возвращ. в	10 точек (S10-S19) используются	10 точек (S10-S19) используются с	
S	Шаговые	нулев. точку	с инструкцией IST	инструкцией IST	
~	реле	Общие	492 точки (S20-S511)	480 точек (\$20-\$499)	
		Энергонезав.	384 точки (S512-S825)	400 точек (\$500-\$899)	
		Сигнальные	124 точки(S896-S1023) 200 точек (Т0-Т199), Т192-Т199 для	124 точки (S900-S1023)	
		Дискр. 100мс	6 точек аккумулятивного типа (Т25		
Т	Таймеры		40 точек (Т200-Т239)	0-1233)	
_	Танмеры	Дискр. 10мс	6 точек аккумулятивного типа (Т24	0-T245)	
		Дискр. 1мс	4 точки аккумулятивного типа (T24	,	
		Инкрементный			
	Счетчики	(16 бит)	96 точек (С0-С95)	100 точек (С0-С99)	
		Инкр. (16 бит) энергонезавис.	104 точек (С96-С199)	100 точек (С100-С199)	
C		Инкр./декрем. 32 бит быстро-	16 точек (С200-С215)	20 точек (С200-С219)	
		дествующий	19 точек (С216-С234)	15 точек (С220-С234)	
		Инкр./декрем.	9 точек (С235-С243), 1фаза, 1вход	10 точек (С235-С244), 1фаза, 1вх.	
		32 бит быстро-	3 точки (С246- С249), 1фаза, 2вх.	4 точки (С246- С249), 1фаза, 2вх.	
		дествующий	3 точки (С251- С254), 2фазы, 2вх.	4 точки (С251- С254), 2фазы, 2вх.	
		Общие	200 точек (D0-D199)	200 точек (D0-D199)	
			3800 точек	8800 точек	
D	Регистры	Энергонезав.	(D200-D999, D2000-D4999)	(D200-D999, D2000-D9999)	
	данных	Специальные	1000 точек (D1000-D1999)	1000 точек (D1000-D1999)	
		Индексные	8 точек: Е0-Е3, F0-F3	16 точек: Е0-Е7, F0-F7	
Фай	 и́ловые регистр		, , , , , , , , , , , , , , , , , , ,	· ·	
	иловые регистр истры для хран	*	1600 точек (0-1599)	10000 точек (0-9999)	
N	Для вложении		8 точек (N0-N7). Точки управления	вложенными циклами	
P	Р Для инструкций CJ, CALL		256 точек (Р0-Р255). Флаги для опе	раторов перехода, подпрограмм	
				6 точек с включением по	
		Внешние	6 точек с включением по переднему фронту: I001(X0), I101(X1), I201(X2), I301(X3), I401(X4), I501(X5)	переднему фронту (x=1) или по заднему (x=0): I00x(X0), I10x(X1), I20x(X2), I30x(X3), I40x(X4), I50x(X5)	
Ι	Прерывания	Временные	I6xx (1mc), I7xx (1mc) (xx=10-99)	I6xx (1мс), I7xx (1мс) , I8xx (0.1мс) (xx= 10-99)	
		Быстр. счетч.	I010, I020, I030, I040, I050, I060	I010, I020, I030, I040, I050, I060	
		Импульсные		4 точки (І110, І120, І130, І140)	
		Коммуникац.	1 точка (I150)	2 точки (I150, I160)	
		Trommy minau.	1 10 mm (1100)	= 10 IMI (1100, 1100)	

Продолжение таблицы

Элс	емент	SA/SX	ЕН	
К	Десятичные константы	К-32768 К32767 (16 битные операции) К-2147483648 К2147483647 (32 битные операции)		
Н	Шестнадцатеричные константы	H0000HFFFF (16 битные операции) H00000000HFFFFFFFF (32 битные операции)		
Ком	имуникационные порты	COM1: RS-232, COM2: RS-485 (может быть master и slave) COM1 и COM2 могут работать независимо		
Пот	генциометр	Модуль ЦПУ (кроме SX) имеет 2 во задания значений соответствующих	•	
Час	ы реального времени	Модуль ЦПУ имеет встроенных часы реального времени с хранением значений в соответствующих регистрах		
	стродействующий импульсный код (для ЕН серии)	Макс выходная частота - 200 кГц (DVP20EH00T, DVP32EH00T)		
	оты расширения для ЕН серии ция)	Карта RS-232, карта RS-485, карта DIP переключателей/потенциометр 2 транзисторных выхода, 2 аналог. вых., 2 аналог. входа, COM3 (RS-485), 4 дискретных входа (4PI).		
	ешняя карта памяти для ЕН ии (опция)	Используется для хранения програм на другой ПЛК. Может быть записа		
Mo	дули расширения (опция)	Используются все модули от SS- серии (AD, DA, PT, TC, XA, RT) Примечание: 8 аналоговых модулей максимально	AD, DA, PT, TC, XA, HC, PU Примечание: 8 аналоговых модулей максимально	

Дополнительные характеристики

	Энергонезав.	Аналоговые входы/	Высокоскоростные входы/выходы	
Серия	регистры	выходы (встроенные в	Быстродействующие	Генераторы импульсов
	(слов)	модуль ЦПУ)	счетчики (РІ)	(PO)
ES	192	-	1 фазн. сч. (2 позиции:	
EX	192	4 аналоговых двуполярн. входа (10бит). 2 аналоговых однопол. выхода (8бит).	входы X0/X1 — 30 кГц макс.). 1 фазн. сч. (2 позиции: входы X2/X3 — 10 кГц	2 канала (10 кГц макс). Возможно управление
SS	192	-	макс.). 2 фазн. сч. (1 позиция: 7 кГц макс.). Суммарно - 30 кГц макс	разгоном / замедлением
SA	3800	-	1 фазн. сч. (2 позиции:	
SX	3800	2 аналоговых двуполярн. входа (12бит). 2 аналоговых двуполярн. выхода (12бит).	входы X0/X1 — 30 кГц макс.). 1 фазн. сч. (4 позиции: входы X2- X5 — 10 кГц макс.). 2 фазн. сч. (1 позиция: 7 кГц макс.). Суммарно - 30 кГц макс	1 канал (50 кГц макс). Возможно управление разгоном / замедлением
ЕН	8800	Опция: 2 аналоговых однопол. входа (12бит). 2 аналоговых однопол. выхода (12бит).	Низкая скорость: 1 фазн. сч. (6 позиции: 20 кГц макс.) Высокая скорость: 1 фазн. сч. (4 позиции: 200 кГц макс.) 2 фазн. сч. (4 позиции: 100 кГц макс.).	2 канала (200 кГц макс). Возможно управление разгоном / замедлением, команды управления позиционированием

Карты расширения для DVP-EH

Для контроллеров серии ЕН разработано большое количество функциональных карт расширения, конструктивно устанавливаемых на корпусе ПЛК.

Обозначение	Функция и возможное применение	Установка
DVP-F4IP	4 дискретных входа.	
DVP-F20T	2 транзисторных выхода.	
DVP-F2DA	2 аналоговых выхода. Например, для задания частоты вращения двигателей.	29 29 10 10 2 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10
DVP-F2AD	2 аналоговых входа.	- 5.8 - chock
DVP-F232S	Коммуникационный порт RS-232 (COM3). Если вам необходимо иметь 2 порта RS232, например, для соединения ПК и ОП, а по RS-485 управлять приводом.	FAT OA
DVP-F485S	Коммуникационный порт RS-485 (COM3). Если вам необходимо иметь 2 порта RS485, например, для соединения ПК и ПЧ, а по RS-232 соединяться с операторской панелью.	
DVP-F8ID	8 DIP переключателей. Могут использоваться для коммутации внутренних реле как дополнительные дискретные входы.	# 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
DVP-F232	Коммуникационный порт RS-232. Если вам необходимо иметь ведущий порта RS232, например, для соединения модема, RS-485 при этом заблокирован.	DYP-EH
DVP-F422	Коммуникационный порт RS-422. RS-485 при этом заблокирован.	
DVP-F6VR	6 поворотных потенциометров. Могут использоваться для плавного изменения значений регистров	

Внешняя карта памяти

Может устанавливаться на контроллеры серии ЕН (модуль ЦПУ 32вх./вых. и выше) в специальный слот и выполнять следующие

функции:

- резервное копирование и переноска данных
- быстрая загрузка программы на большое количество ПЛК (копирование)
- может записываться через HPP02 или WPLsoft
- защита паролем

Установка

Извлечение

Имитация входных сигналов для отладки программы

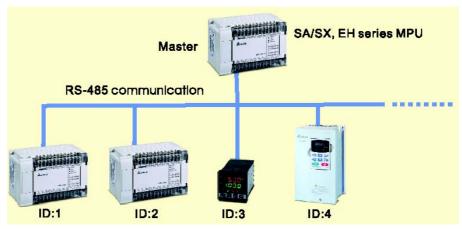
В контроллерах серии SA/SX/ЕН при использовании тестового режима для отладки программы в WPLSoft возможно имитировать изменение состояния входных реле X без подключения на дискретные входы ПЛК каких-либо внешних датчиков, переключателей и т.д.

Встроенные коммуникационные порты

Контроллеры DVP имеют два встроенных последовательных коммуникационных порта (COM1 и COM2) и дополнительный COM3 (в ЕН серии). Порты могут использоваться для соединения ПЛК с персональным компьютером, операторской панелью и другими периферийными или сетевыми устройствами. Спецификация коммуникационных портов дана в таблице.

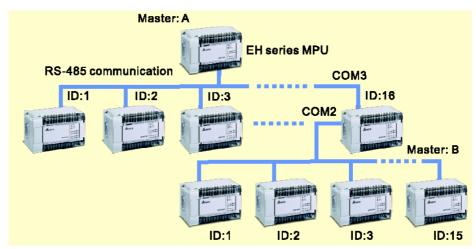
	Тип ПЛК	ES/EX/SS		SA/SX		EH	
C	Тип порта	RS-23	32	RS-232		RS-232	
	Режим работы	Ведомый ((Slave)	Ведомый (Slave)	Ведомый (Slave)
O M	Протокол	Modbus A	ASCII	Modbus ASO	CII/RTU	Modbus ASO	CII/RTU
1	Скорость (бит/с)	9600)	9600 – 11	5200	9600 – 11	5200
1	Подкл. устройства	ПК, панель о	ператора	ПК, панель о	ператора	ПК, панель о	ператора
						RS-48	_
	Тип порта	RS-48	35	RS-48	5	(может быть и	
						RS-232, RS-422)	
	Режим работы	Ведущий	Ведомый	Ведущий	Ведомый	Ведущий	Ведомый
C		Modbus или		Modbus или		Modbus или	
o	_	формат опре-	Как в	формат опре-	Как в	формат опре-	Как в
M	Протокол	деленный	COM1	деленный	COM1	деленный	COM1
2		польз. в RS		польз. в RS		польз. в RS	
		инструкциях		инструкциях		инструкциях	
	Скорость (бит/с)	9600/19200/ 38400	9600	9600 – 11	5200	9600 – 11	5200
	Подкл. устройства	ПЛК, ПЧ и	Как в	ПЛК, ПЧ и	Как в	ПЛК, ПЧ и	Как в
	подкл. устроиства	др.	COM1	др.	COM1	др.	COM1
C	Тип порта					RS-422, R	
O	Режим работы	_		_		Ведомый/ М	
M	Скорость (бит/с)	_		_		9600/19200	/ 38400
3	Подкл. устройства					ПК, панель о	ператора

Modbus инструкции для работы с портами


В контроллерах DVP есть специальные инструкции для работы с портом RS-485. Если внешнее устройство поддерживает протокол Modbus, то в инструкции достаточно указать адрес устройства в сети (ID), регистр и данные, которые должны быть записаны/считаны. Все остальные элементы (контрольная сумма, стартовые и стоповые символы и т.д.) будут сформированы автоматически, что значительно упрощает процесс

формирования команд работы с портами, экономит память контроллера и время программирования. Также будут сформированы флаги коммуникации, включая сторожевой таймер, и ошибки приема/отправки данных.

Организация связи типа 1:N (для SA/SX/EH серии)

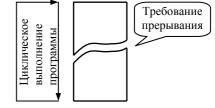

Контроллеры SA/SX/ЕН серии позволяют организовать простой и удобный обмен данными между устройствами в сети RS-485. Ведущий контроллер (Master), будет осуществлять автоматический обмен данными (макс. 16 слов) между ведомыми устройствами через себя,

помещая их в специальный регистр. Максимальное количество ведомых устройств – 16.

Организация связи типа N:N (для ЕН серии)

Контроллеры ЕН серии позволяют организовать двухуровневый обмен данными между двумя сетями типа 1:N, если необходимо связать более 16 устройств Ведущий контроллер (Master A), будет осуществлять автоматический обмен данными между ведомыми

устройствами первой сети. Master B выполняет роль шлюза, являясь ведущим устройством во второй сети и ведомым в первой. Master B должен быть укомплектован картой расширения DVP-F485S.


Обработка аппаратных прерываний

Прерывания останавливают циклическое выполнение программы на время их обработки и в контроллерах DVP бывают следующих видов:

- Внешние прерывания, вызываемые сигналами на дискретных входах (до 8 точек)
- Временные прерывания, вызываемые таймерами
- Прерывания от скоростных счетчиков
- Прерывания от скоростных импульсных выходов
- Коммуникационные прерывания

Пример 1: Прерывание от скоростного импульсного выхода

Пример 2: Коммуникационное прерывание

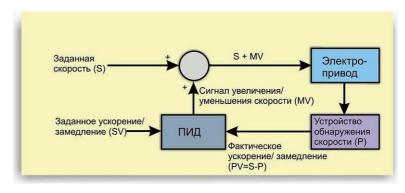
Встраиваемая цифровая панель DVPDU01

Цифровой терминал DU01 может быть вставлен в слот расширения контроллера DVP-EH (32 вх/вых и больше). В других сериях DVP терминал подключается с помощью соединительного кабеля. На дисплее DU01 может отображаться текущее состояние внутренних устройств (значения регистров, счетчиков, таймеров, входных/выходных/внутренних

реле, часы реального времени, параметры модулей расширения). Кнопками управления панели можно оперативно изменять значения этих устройств.

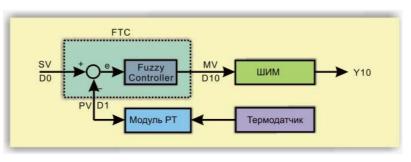
Цифровую панель DU01 так же можно использовать для копирования программы, данных и файловых регистров с одного ПЛК на другой.

Встроенный аналоговые входы/выходы и 2-х разрядный цифровой дисплей в DVP-SX



- Модуль ЦПУ DVP-SX имеет 2 аналоговых входа и 2 аналоговых выхода с разрешением 12 бит, двухполярные. Использование этих входов/выходов значительно упрощает работу с аналоговыми сигналами, так как их значения автоматически конвертируются и хранятся в специальных регистрах и не требуют использования команд FROM/TO.
- Встроенный 2-х разрядный 7-ми сегментный индикатор позволяет постоянно отображать значение какого-либо выбранного регистра (например, код текущей ошибки или коммуникационный адрес в сети).

Функция ПИД-регулятора


Эта функция используется для регулирования различного рода процессов, таких как поддержание постоянного воздушного потока, расхода, давления и скорости с помощью сигналов обратной связи с соответствующего датчика. Все DVP имеют встроенную функцию ПИД-регулятора. Рассмотрим алгоритм работы ПИД-регулятора на примере поддержания постоянной скорости электропривода.

Зданное значение ускорения/ замедления (SV) сравнивается с фактическим значением изменения скорости (PV) с аналогового входа и вырабатывается сигнал рассогласования (SV-PV), который преобразуется всоответствие с установленными коэффициентами ПИД регулятора в аналоговый сигнал увеличения или уменьшения заданой скорости (MV).

Функция FTC (Fuzzy Temperature Control) управления температурой (для серии SA/SX/EH)

Функция FTC - это ПИДрегулятор, оптимизированный для управления процессом поддержания заданной температуры с помощью сигнала ШИМ на дискретном выходе. Принцип действия функции FTC следующий: заданное значение температуры (SV) сравнивается с

измеренным (PV); полученное рассогласование обрабатывается в fuzzy контроллере и на выходе получается сигнал управления (MV), который с помощью формирователя ШИМ (инструкция GPWM) управляет включением/выключением выхода Y10, который может коммутировать нагревательное или охлаждающее устройство. Время цикла задается. Не требуется настройки никаких дополнительных параметров.

Высокоскоростной счетчик

Высокоскоростные счетчики с различными характеристиками (см. таблицу) есть во всех сериях DVP. Они работают по внешним прерываниям от различных генераторов импульсов (например, инкрементальный энкодер) и могут вырабатывать команду управления по достижении заданного значения счета.

Высокоскоростные счетчики могут использоваться в различном оборудовании, где необходима

высокая точность синхронизации по положению и по скорости.

	1 фаза 1 вход		1 фаза	1 фаза 2 входа		2 фазы 2 входа	
Серия	Кол-во	Макс.	Кол-во	Макс.	Кол-во	Макс.	
	счетчиков	частота	счетчиков	частота	счетчиков	частота	
ES/EX/SS	4	30 кГц	1	30 кГц	1	7 кГц	
SA/SX	6	30 кГц	1	30 кГц	1	7 кГц	

Примечание: Максимальная частота является суммарной для всех используемых скоростных счетчиков. Если используется один однофазный счетчик, то его частоты может быть 30 кГи.

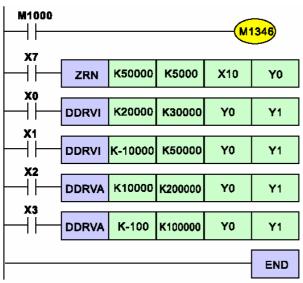

	Общие		Аппаратные					
Серия	1 фаза 1	1 вход	1 фаза 1	1 вход	1 фаза 2	входа	2 фазы 2	2 входа
Серия	Кол-во	Макс.	Кол-во	Макс.	Кол-во	Макс.	Кол-во	Макс.
	счетчиков	частота	счетчиков	частота	счетчиков	частота	счетчиков	частота
EH	o	20 44 544	4(2/2)	200 кГц/	4(2/2)	200 кГц/	4(2/2)	200 кГц/
En	0	20 кГц	4(2/2)	30κΓц 4(2/2)	30кГц	4(2/2)	30кГц	

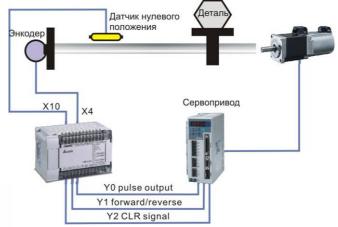
Примечание: Аппаратные счетчики разбиты на две группы по два счетчика. Максимальная частота $200 \ \kappa \Gamma$ μ относится κ каждому из используемых 2-х высокоскоростных счетчиков, а частота $30 \ \kappa \Gamma$ μ является суммарной для остальных скоростных счетчиков.

Импульсный выход

Во всех сериях DVP есть 2 высокоскоростных импульсных выхода.

Они могут применяться для создания систем прецизионного управления шаговыми или сервоприводами в замкнутом или разомкнутом контуре по двум координатам. Инструкции позволяют обеспечить плавный разгон/замедление сервоприводов.



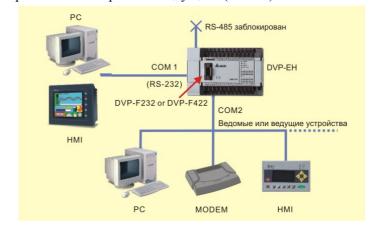

Conve		іки вывода	Макс. выходная частота	
Серия	Кол-во	Наименование	Y0	Y1(Y2)
ES/EX/SS	2	Y0, Y1	10 кГц	10 кГц
SA/SX	2	Y0, Y1	50 кГц	10 кГц
EH	2	Y0, Y2	200 кГц	200 кГц

Инструкции позиционирования (для серии ЕН)

В контроллере DVP-EH есть специальные инструкции (ABSR, ZRN, PLSV, DRVI, DRVA) для управлением положением, включая режимы выхода в «ноль» и разгон/замедление, в относительных или абсолютных координатах.

На рисунке показан пример построения простейшее системы управления положением детали по 1 координате.

- При замыкании контакта X7, начинает работать функция «выход в ноль»: деталь начнет двигаться влево (частота импульсов 50 кГц) пока датчик нулевого положении не установит контакт X10=on. Затем деталь будет двигаться вправо (частота импульсов 5 кГц) и остановится когда X0=off. Флаг нулевого положения M1346 установится в состояние «on» и сигнал на выходе Y2 очистит счетчик сервопривода.
- Когда X0=on, деталь совершит перемещение влево на 20 000 импульсов
- с частотой 30 кГц. Y1=on (forward). Движение в относительных координатах.
- Когда X1=on, деталь совершит перемещение вправо на 10 000 импульсов с частотой 50 кГц. Y1=off (revers). Движение в относительных координатах.
- Когда X2=on, деталь совершит перемещение с частотой 200 кГц на расстояние 10 000 импульсов от нулевого положения. Y1= on (forward). Движение в абсолютных координатах.
- Когда X3=on, деталь совершит перемещение с частотой 100 кГц на расстояние -100 импульсов от нулевого положения. Y1=off (revers). Движение в абсолютных координатах.


Дополнительные устройства для контроллеров серии ЕН

Карты расширения коммуникационных портов

Модуль ЦПУ имеет два встроенных порта: COM1 (RS-232) и COM2 (RS-485). Порт COM1 может быть только ведомым, а порт COM2 может работать как в режиме ведущего (Master) так и

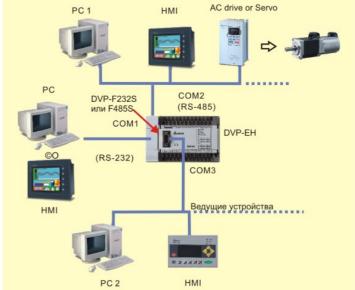
ведомого (Slave). Если пользователю нужен порт RS-232 в качестве ведущего или RS-422, то можно применить соответствующие карты расширения: DVP-F232 или DVP-F422, при этом RS-485 будет заблокирован.

DVP-F232

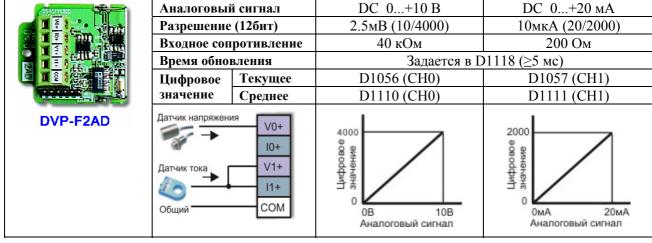
DVP-F422

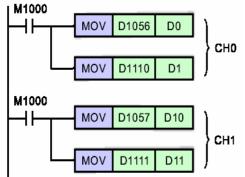
DV1-1202 DV1-1	722		
Модель	DVP-F232	DVP-F422	
СОМ порт	Стандартный RS-232C	Стандартный RS-422	
Макс. дистанция	15 м	500 м	
Питание	30 мА / 5VDC (питание берется от ПЛК)		
Режим работы	Ведомый/ведущий, двунаправленный поток данных		
Скорость	110, 150, 300,9600, 19200, 38400, 57600, 115200		
Протокол обмена	Длина данных: 7 или 8, Четность: Non/Even/Odd, Стоп бит: 1 или 2		
Индикация	Тх (передача данных), Rx (прием данных)		

Дополнительные порты RS-232 и RS-485


Модуль ЦПУ имеет два встроенных порта: COM1 (RS-232) и COM2 (RS-485). Если пользователю нужен дополнительный порт (COM3) RS-232 или RS-485, то можно применить соответствующие карты расширения: DVP-F232S или DVP-F485S, при этом, они могут работать только в режиме ведомого.

DVP-F485S


DVP-F232S



Модель	DVP-F232S	DVP-F485S	
СОМ порт	Стандартный RS-232C	Стандартный RS-485	
Макс. дистанция	15 м	500 м	
Питание	30 мА / 5VDC (питание берется от ПЛК)		
Режим работы	Ведомый, двунаправленный поток данных		
Скорость	9600, 19200, 38400		
Протокол обмена	Длина данных: 7, Четность: Even, Стоп бит: 1		
Индикация	Тх (передача данных), Rx (прием данных)		

Карта аналогового ввода DVP-F2AD

Карта имеет два аналоговых входа, на которые могут подаваться сигналы от 0 до 10В или от 0 до 20 мА. Сигналы преобразуются в цифровые и сохраняются в специальных регистрах.

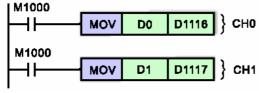
Если в регистре D1 записано значение К1472, то можно рассчитать величину сигнала

на аналоговом входе СН0 следующим образом:

 $=1472 \times \frac{10V}{4000} = 3.68V$

Если в регистре D11 записано значение K1234, то можно рассчитать величину

сигнала на аналоговом входе СН0 следующим


 $=1234 \times \frac{20mA}{2000} = 12.34mA$

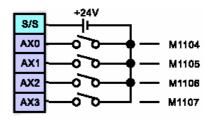
Карта аналогового вывода DVP-F2DA

Карта имеет два аналоговых выхода, с которых могут сниматься сигналы от 0 до 10В или от 0 до 20 мА. Значения специальных регистров преобразуются в аналоговые сигналы.

образом:

Если вы нуждаетесь в токовом сигнале 12.34 мА, то D0 рассчитывается так:

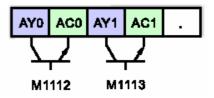
Если вы нуждаетесь в напряжении 5.23B, то D1 рассчитывается так:


$$=12.34mA \times \frac{4000}{20mA} = 2468$$

$$=5.23V\times\frac{4000}{10V}=2092$$

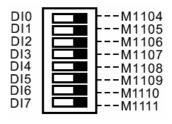
Карта дискретного ввода DVP-F4IP

Карта имеет 4 дискретных входа, оптически изолированных от ПЛК. Состояние входов записывается в М1104-М1107.



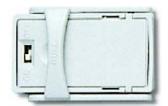
Карта дискретного вывода DVP-F2OT

Карта имеет 2 дискретных выхода (транзисторы).


Состояние выходов изменяется в М1112 и М1113.

Карта DVP-F8ID (8 DIР переключателей)

Могут использоваться для коммутации внутренних реле М1104-М1111, как дополнительные дискретные входы, а также для чтения инструкцией SWRD (API 109): DI0 - DI7.


Карта DVP-F6VR (6 переменных резисторов)

6 поворотных потенциометров VR2 – VR7.

Могут использоваться для плавного изменения значений регистров аналогично встроенным потенциометрам VR0, VR1. (см. инструкции VRRD и VRSC).

Карта памяти DVP-256FM

Чтение/запись происходит при подаче напряжения питания на ПЛК, если переключатель, расположенный на карте памяти, установлен в положение «on».

Цифровая панель управления DVPDU01 (возможно использование с EH и ES)

В зависимости от установки микропереключателя, расположенного на DVPDU01, пульт может выполнять следующие функции: **TS-01**:

- Чтение/запись значений внутренних устройств ПЛК (часы, реле X,Y, M, S, регистры данных, счетчиков, таймеров, управляющие регистры CR и др.), в том числе, 32 битных.
- Установка начального дисплея и режима энергосбережения **TC-01:**

DVPDU01

• Чтение/запись программы, регистров данных D, и файловых регистров F в ПЛК.

- Копирование программы и данных
- Возможность защиты данных паролем.

Специальные модули расширения

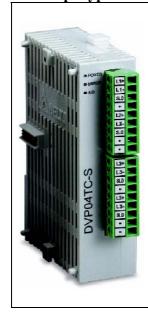
Модуль аналогового ввода DVP04AD-S (для серий SS/SA/SX)

TO BEOGLE VI O HIE S (AUX			
Тип входа	Потенциальный Токовый		
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 аналоговых входа		
Диапазон входного сигнала	± 10 B	± 20 mA	
Диапазон преобразован-	± 8000	± 4000	
ного сигнала	± 8000	± 4000	
Разрешение	14 бит (1ед=1.25мВ) 13 бит (1ед=5мВ)		
Входное сопротивление	200 кОм и выше	250 Ом	
Точность	0.5% от полной шкалы при 25^{0} С (1% при $0-55^{0}$ С)		
Время обновления	3 мс на канал		
Изоляция	Изолирована цифрова	ая и аналоговая часть.	
изолиции	Между собой канал	ы не изолированы.	
Абсолютный входной	± 15 B ± 32 MA		
диапазон	± 13 B	± 32 MA	
Формат цифровых данных	2 x16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Coormona o vorticos IIIIV	К одному модулю ЦПУ	можно подключить до	
Соединение с модулем ЦПУ	8 аналоговых модулей ввода/вывод		

Модули аналогового вывода DVP04DA-S и DVP02DA-S (для серий SS/SA/SX)

ого вывода DVP04DA-S и DVP02DA-S (для серии SS/SA/SX)				
Тип выхода	Потенциальный	Токовый		
Напряжение питания	24 VDC (20.428.8VDC)			
Кол-во каналов вывода	4 аналоговых выхода, 2 аналоговых выхода			
Диапазон входного сигнала	010 В 020 мА			
Диапазон преобразован- ного сигнала	04000 04000			
Разрешение	12 бит (1ед=2.5мВ)	12 бит (1ед=5мкА)		
Выходное сопротивление	0.5 Ом и меньше			
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)			
Время обновления	3 мс на канал			
Выходной ток	20 мА макс			
Допустимое внешнее сопротивление	1 кОм – 2 МОм	0 - 500 Ом		
Изоляция	Изолирована цифровая и аналоговая часть. Между собой каналы не изолированы.			
Формат цифровых данных	2 х16 бит, 12	значащих бит		
Защита	Потенциальные выходы имеют защиту от короткого замыкания, но длительные перегрузки могут привести к разрушению модуля.			
Режим коммуникации	RS-485: ASCII/RTU			
Соединение с модулем ЦПУ	К одному модулю ЦПУ можно подключить до 8 аналоговых модулей ввода/вывода.			

Температурный модуль (Pt100) DVP04PT-S (для серий SS/SA/SX)


Тип	⁰ C	$^0\mathrm{F}$	
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 входа		
Тип термодатчика	Термосопротивление Pt100 (3-х проводное)		
Диапазон температур	- 200 °C +600 °C	- 328 °F +1112 °F	
Диапазон преобразован- ного сигнала	-20006000	-328011120	
Разрешение	14 бит (1ед=0.1°С)	14 бит (1ед=0.18 ⁰ F)	
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)		
Время обновления	200 мс на канал		
Изоляция	Изолирована цифровая и аналоговая часть. Между собой каналы не изолированы.		
Формат цифровых данных	2 x16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Соединение с модулем ЦПУ	К одному модулю ЦПУ можно подключить до		
, , , , , , , , , , , , , , , , , , ,	8 аналоговых модулей ввода/вывода.		

Модуль аналогового ввода/вывода DVP06XA-S (для серий SS/SA/SX)

то ввода вывода в ттоожн-в (для серии вывливых)					
Тип	Аналогов	ые входы	Аналоговн	Аналоговые выходы	
ТИП	Напряж.	Ток	Напряж.	Ток	
Напряжение питания		24 VDC (20.	428.8VDC)	l	
Кол-во каналов	4 аналого	вых входа	2 0110 110 110 1111 1111 1111 1111		
ввода/вывода			2 аналоговых выхода		
Диапазон вх./вых. сигнала	± 10 B	± 20 мА	010 B	020 мА	
Диапазон преобразован-	± 2000 ± 1000		0 /	4000	
ного сигнала					
Разрешение	12 бит	11 бит	12 бит	12 бит	
Тизрешение	(5мВ)	(20мкА)	(2.5мВ)	(5мкА)	
Вход./вых. сопротивление	200 кОм 250 Ом 0.5 Ом и ме				
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)		гри 0-55°C)		
Время обновления	3 мс на канал				
Выходной ток	- 20 мА макс.		макс.		
Допустимое внешнее			1 кОм – 2	0 - 500	
сопротивление	_		МОм	Ом	
Изоляция	Нет.				
Абсолютный входной	± 15 B	± 32 мA			
диапазон	± 13 B	± 32 MA		<u>-</u>	
Формат цифровых данных	2 х16 бит, 13 значащих бит, среднее значение				
	Детектирование верхней и нижней -				
Функции диагностики			-	-	
	гран	ицы			
Режим коммуникации		RS-485: A	SCII/RTU		
	К одному м	иодулю ЦПУ	можно поді	ключить до	
Соединение с модулем ЦПУ	8 аналоговых модулей ввод				
1			, ,		

Температурный модуль (термопары) DVP04TC-S (для серий SS/SA/SX)

Тип	⁰ C	$^{0}\mathrm{F}$	
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 входа		
Тип термодатчика	Термопары К(ХА) и Ј(ЖК) типов		
Диапазон температур	K: - 100 °C +1000 °C		
Диапазон преобразован-	K: - 1000 +10000	K: - 1480 +18320	
ного сигнала	J: - 1000 +7000	J: - 1480 +12920	
Разрешение	14 бит (1ед=0.1 °C) 14 бит (1ед=0.18		
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)		
Время обновления	250 мс на канал		
Изолания	Изолирована цифрова	ая и аналоговая часть.	
Изоляция	Между собой каналы не изолированы.		
Формат цифровых данных	2 x16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Coordinate a working HHV	К одному модулю ЦПУ можно подключить до		
Соединение с модулем ЦПУ	8 аналоговых модулей ввода/вывода.		

Температурный модуль (NTC тип) DVP08RT-S (для серий SS/SA/SX)

одуль (NTC тип) DVP08RT-S (для серий SS/SA/SX)				
Тип	0 C	$^{0}\mathrm{F}$		
Напряжение питания	24 VDC (20.428.8VDC)			
Кол-во каналов ввода	8 входов			
	Термосопротивление с отрицательным			
Т	температурным коэффициентом (NTC) R25 =10 кОм: 1) B25/86=3977K (- 20 °C +100 °C) 2) B25/85=3630K (- 20 °C +150 °C)			
Тип термодатчика				
Диапазон преобразован-	1) -2001000	1) -402120		
ного сигнала	2) -2001500	2) -403020		
Разрешение	12 бит (1ед=0.1°C) 12 бит (1ед=0.18			
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)			
Время обновления	200 мс на канал			
Изоляция	Нет			
Формат цифровых данных	2 х16 бит, 13 значащих бит, среднее значение			
Функции диагностики	Детектирование верхней и нижней границы			
Режим коммуникации	RS-485: ASCII/RTU			
Coordinate	К одному модулю ЦПУ	можно подключить до		
Соединение с модулем ЦПУ	8 аналоговых модулей ввода/вывода.			

Модуль аналогового ввода DVP04AD-H (для серий EH)

Тип входа	Потенциальный Токовый		
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 аналоговых входа		
Диапазон входного сигнала	$\pm 10 \text{ B}$ $\pm 20 \text{ MA}$		
Диапазон преобразован-	± 8000	± 4000	
ного сигнала	= 0000	± 4000	
Разрешение	14 бит (1ед=1.25мВ)	13 бит (1ед=5мкА)	
Входное сопротивление	200 кОм и выше	250 Ом	
Точность	0.5% от полной шкалы при 25^{0} С (1% при $0-55^{0}$ С)		
Время обновления	3 мс на канал		
Изоляния	Изолирована цифровая и аналоговая часть.		
Изоляция	Между собой канал	ы не изолированы.	
Абсолютный входной	± 15 B ± 32 MA		
диапазон			
Формат цифровых данных	2 х16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Commence	К одному модулю ЦПУ	можно подключить до	
Соединение с модулем ЦПУ	8 аналоговых моду	лей ввода/вывода.	

Модуль аналогового вывода DVP04DA-H (для серий ЕН)

го вывода DVP04DA-Н (для серий ЕН)				
Тип выхода	Потенциальный	Токовый		
Напряжение питания	24 VDC (20.428.8VDC)			
Кол-во каналов вывода	4 аналоговых выхода			
Диапазон входного сигнала	010 B	020 мА		
Диапазон преобразован-	04000	04000		
ного сигнала	04000	04000		
Разрешение	12 бит (1ед=2.5мВ)	12 бит (1ед=5мкА)		
Выходное сопротивление	0.5 Ом и меньше			
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)			
Время обновления	3 мс на канал			
Выходной ток	20 мА макс			
Допустимое внешнее	1 кОм – 2 МОм	0 - 500 Ом		
сопротивление	1 KOM – 2 IVIOM	0 - 300 OM		
Изоляция	Изолирована цифровая и аналоговая части Между собой каналы не изолированы.			
изолиции				
Формат цифровых данных	2 x16 бит, 12 значащих бит			
	Потенциальные выходы имеют защиту от			
Защита	короткого замыкания, но длительные перегрузки могут привести к разрушению модуля.			
Режим коммуникации	RS-485: A	SCII/RTU		
Соодиновно с модулом ИПУ	К одному модулю ЦПУ	ому модулю ЦПУ можно подключить до		
Соединение с модулем ЦПУ	8 аналоговых моду	х модулей ввода/вывода.		

Модуль аналогового ввода/вывода DVP06XA-H (для серий EH)

то ввода вывода в ттоожет (для серии Епт)				
Тип	Аналоговые входы		Аналоговые выходы	
IMI	Напряж.	Ток	Напряж.	Ток
Напряжение питания		24 VDC (20.4	428.8VDC)	1
Кол-во каналов	1 2		IIV DIIVOHO	
ввода/вывода	4 аналоговых входа		2 аналоговых выхода	
Диапазон вх./вых. сигнала	$\pm 10 B$	$\pm 20 \text{ MA}$	010 B	020 мА
Диапазон преобразован-	± 2000 ± 1000		04000	
ного сигнала	± 2000	± 1000	02	+000
Разрешение	12 бит	11 бит	12 бит	12 бит
Таэрешение	(5мВ)	(20мкА)	(2.5мВ)	(5мкА)
Вход./вых. сопротивление	200 кОм	250 Ом	0.5 Ом и меньше	
Точность	0.5% от полной шкалы при 25^{0} С (1% при $0-55^{0}$ С)		три 0-55°C)	
Время обновления	3 мс на канал			
Выходной ток	- 20 мА макс.		макс.	
Допустимое внешнее			1 кОм – 2	0 - 500
сопротивление	-		МОм	Ом
Изоляция	Изолирована цифровая и аналоговая часть.			вая часть.
Абсолютный входной	± 15 B			
диапазон		_		
Формат цифровых данных	2 х16 бит, 13 значащих бит, среднее значение			е значение
	Детектирование верхней и нижней - границы			
Функции диагностики				-
Защита	Защита от короткого		короткого	
Защита	замыкания			кания
Режим коммуникации	RS-485: ASCII/RTU			
Соединение с модулем ЦПУ	К одному модулю ЦПУ можно подключить до			
Соединение с модулем ЦПУ	8 аналоговых модулей ввода/выво		ывода.	

Температурный модуль (Pt100) DVP04PT-H (для серий EH)

одуль (Pt100) DV P04PT-H (для серий EH)			
Тип	°C	$^{0}\mathrm{F}$	
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 входа		
Тип термодатчика	Термосопротивление Pt100 (3-х проводное)		
Диапазон температур	- 200 °C +600 °C - 328 °F +1112 °F		
Диапазон преобразован-	-20006000	-328011120	
ного сигнала		-320011120	
Разрешение	14 бит (1ед=0.1°C)	14 бит (1ед=0.18 ⁰ F)	
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)		
Время обновления	200 мс на канал		
Изоляния	Изолирована цифровая и аналоговая часть.		
Изоляция	Между собой канал		
Формат цифровых данных	2 x16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Соодиновие с модудом ИПУ	К одному модулю ЦПУ можно подключить до		
Соединение с модулем ЦПУ	8 аналоговых моду	лей ввода/вывода.	

Температурный модуль (термопары) DVP04TC-H (для серий ЕН)

	-	
N		L V OIA •
	Butte	
	04TC	
7		

одуль (термонары) в vi o			
Тип	$^{0}\mathrm{C}$	⁰ F	
Напряжение питания	24 VDC (20.428.8VDC)		
Кол-во каналов ввода	4 входа		
Тип термодатчика	Термопары К(ХА) и Ј(ЖК) типов		
Диапазон температур	K: - 100 °C +1000 °C	K: - 148 °F +1832 °F	
дианазон температур	J: - 100 °C +700 °C	J: - 148 ⁰ F +1292 ⁰ F	
Диапазон преобразован-	K: - 1000 +10000	K: - 1480 +18320	
ного сигнала	J: - 1000 +7000	J: - 1480 +12920	
Разрешение	14 бит (1ед=0.1 °C) 14 бит (1ед=0.1		
Точность	0.5% от полной шкалы при 25° С (1% при $0-55^{\circ}$ С)		
Время обновления	250 мс на канал		
Изаланна	Изолирована цифрова	ая и аналоговая часть.	
Изоляция	Между собой каналы не изолированы.		
Формат цифровых данных	2 x16 бит, 13 значащих бит, среднее значение		
Функции диагностики	Детектирование верхней и нижней границы		
Режим коммуникации	RS-485: ASCII/RTU		
Соотиновия в можетим ИПУ	К одному модулю ЦПУ можно подключить до		
Соединение с модулем ЦПУ	8 аналоговых модулей ввода/вывода.		

Модуль позиционирования DVP04DA-H (для серий ЕН)

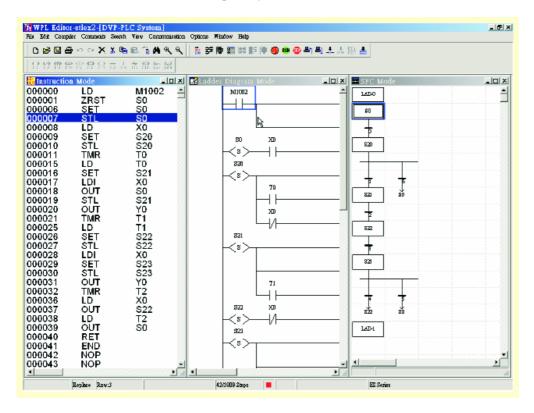
ирования вут очвания (дл	a cepun Ell)	
Напряжение питания	24 VDC (20.428.8VDC)	
Кол-во каналов вывода	1 канал высокоскоростного импульсного	
кол-во каналов вывода	вывода	
Макс. частота импульсов	200 кГц макс.	
Тип выхода	Линейный выход (5 VDC, 20 мА)	
	LSP/LSN (ограничение вправо/влево),	
Управляющие входы	START/STOP, начальное положение,	
	задающий энкодер (А/В)	
Управляющие выходы	Импульсный выход, Направление вращения	
з правлиющие выходы	(FP/RP), Многофункциональный выход (OUT)	
Разгон/замедление	Возможно управление разгоном/замедлением	
Prova of your gover	START: 40 MC	
Время обновления	4 мс для триггера ограничения вправо/влево	
Соотическое выпуское ИПУ	К одному модулю ЦПУ можно подключить до	
Соединение с модулем ЦПУ	8 модулей позиционирования.	

Модуль высокоскоростного счета (1 канал) DVP01HC-H (для серий ЕН)

Amer	PDACE -V
01HC	ME • (12 • 151 •

Напряжение п	итания	24 VDC (20.428.8VDC)	
	Уровень	+5B, +12B, +24B	
Входной		200 кГц для 1 фаза 1 вход	
сигнал	Частота	200 кГц для 1 фаза 2 входа	
		200 кГц для 2 фазы 2 входа	
Пионозон онот	na.	16 бит: 0 65535	
Диапазон счет	а	32 бит: -2147483648 +2147483647	
Тип выхода		Линейный выход (5 VDC, 20 мА)	
Режим счета		Циклический (по кругу)	
Тин вимонов		2 выхода: YH0, YH1 (NPN, открытый	
Тип выходов		коллектор, 524 VDC, 0.5A)	
Дополнительн	u to daymentu	Разрешение/запрещение счета и установка	
дополнительн	іыс функции	начального значения счетчика	
Соотиновно о	VПП монуном	К одному модулю ЦПУ можно подключить до	
Соединение с	модулем ЦПУ	8 модулей быстрого счета.	

Модуль высокоскоростного счета (2 канала) DVP02HC-H (для серий ЕН)

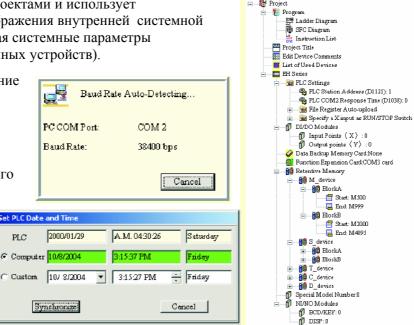

Напряжение	питания	24 VDC (20.428.8VDC)	
	Уровень	+24B	
Входной		200 кГц для 1 фаза 1 вход	
сигнал	Частота	200 кГц для 1 фаза 2 входа	
		200 кГц для 2 фазы 2 входа	
Диапазон сче	TO	16 бит: 0 65535	
диапазон сче	ıa	32 бит: -2147483648 +2147483647	
Тип выхода		Линейный выход (5 VDC, 20 мА)	
Режим счета		Циклический (по кругу)	
Тип вимолов		2 выхода: YH0, YH1 (NPN, открытый	
Тип выходов		коллектор, 524 VDC, 0.5A)	
Пополнитон	ные функции	Разрешение/запрещение счета и установка	
дополнитель	ные функции	начального значения счетчика	
Соодинонно о	модулем ЦПУ	К одному модулю ЦПУ можно подключить до	
Соединение	, модулем цпз	8 модулей быстрого счета.	

Модули цифрового ввода DVP08KY-H и DVP08BD-H (для серий ЕН)

модули цифровог	о ввода ругоок 1-п и ру	гообо-н (для серии і	LП)
	Тип	DVP08KY-H	DVP08BD-H
	Напряжение питания	24 VDC ot M	иодуля ЦПУ
in the state of th		Матричная клавиатура (размер 8x8 макс.)	DIP переключатели (8 разрядов макс.)
KEY	Устройства ввода	$\begin{array}{c c} \underline{0}_{\scriptscriptstyle D} & \overline{1}_{\scriptscriptstyle D} & \underline{2}_{\scriptscriptstyle D} & \overline{3}_{\scriptscriptstyle D} \\ \hline \underline{4}_{\scriptscriptstyle D} & \overline{5}_{\scriptscriptstyle D} & \underline{6}_{\scriptscriptstyle E} & \overline{7}_{\scriptscriptstyle D} \\ \hline \underline{8}_{\scriptscriptstyle D} & \overline{9}_{\scriptscriptstyle D} & \overline{A}_{\scriptscriptstyle D} & \overline{B}_{\scriptscriptstyle D} \\ \hline \underline{C}_{\scriptscriptstyle D} & \overline{D}_{\scriptscriptstyle D} & \overline{E}_{\scriptscriptstyle D} & \overline{E}_{\scriptscriptstyle D} \end{array}$	38707533
	Чтение входного значения	Запись координаты в специальный регистр	Запись значения в специальный регистр
			ирование
	Характеристики	_	ь кол-во дискретных
		входов	в ПЛК
	Commission	К одному модулю ЦПУ	можно подключить до
	Соединение с модулем ЦПУ	2 молупей нис	

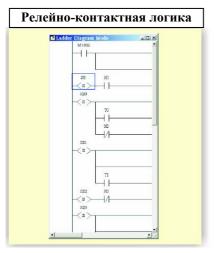
Пакет программирования WPLSoft

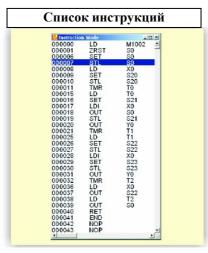
WPLSoft позволяет программировать, редактировать и отлаживать программу всех контролеров DVP, а так же конфигурировать модули ЦПУ и периферийное оборудование. Удобство работы с пакетом позволит легко освоить работу с ним.



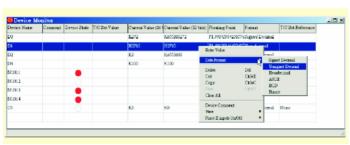
Основные характеристики

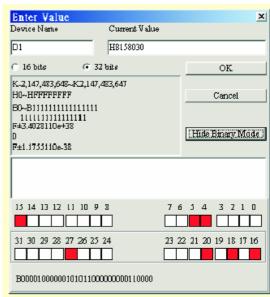
- Работает под Windows, имеет интерфейс на английском языке и развитую систему помощи.
- Позволяет писать комментарии на русском языке (комментарии к устройствам, строкам и блокам в режиме LAD).
- Поддерживает работу с проектами и использует иерархический метод отображения внутренней системной информации ПЛК (включая системные параметры подключенных периферийных устройств).


PLC


- Автоматическое определение параметров и скорости коммуникации подключенного ПЛК.
- Установка значений календаря и часов реального времени.
- Поддерживает два варианта соединения с ПЛК: прямое соединение и через модем. Скорость загрузки программы может быть до 115200 бит/с.

□ - - Project


- Возможна отладка программы в режиме ONLINE с отображением текущего состояния всех внутренних устройств.
- Для программирования всех типов центральных процессоров могут быть использовано три языка структурного программирования: LAD (диаграммы релейно-контактной логики), IL (список инструкций) и SFC (последовательные функциональные схемы). Редактор позволяет выполнять конвертацию программы с одного языка на другой и обратно. Интерфейс редактора позволяет отображать программу одновременно во всех трех языковых режимах.



- Возможность редактирования значений всех типов внутренних устройств ПЛК (включая M, S, T, C, D и файловые регистры).
- Много полезных функций для режима on-line, таких как:
 - удобная установка протокола коммуникации, который будет сохранен в регистре D1120;
 - LRC/CRC генератор для расчета контрольных сумм используемых в режиме MODBUS;
 - чтение внутренней системной информации ПЛК;
 - мастер помогающий написать сложные инструкции: ПИД-регулятор, быстродействующий счетчик, импульсный выход и др.
- Различные виды отображения информации в режиме отладки программы: двоичный код, шестнадцатеричный, десятичный целый или с плавающей точкой, а также ASCII и BCD.

Основные инструкции

Тип	Код	Функция	Схема		ЛК	
	110Д	•	, X, Y, M, S, T, C	ES/EX/SS	SA/SX	EH
	LD	Нормально открытый контакт		+	+	+
	LDI	Нормально закрытый контакт	X, Y, M, S, T, C	+	+	+
	LDP	Инициализация входа по включению	X, Y, M, S, T, C	+	+	+
	LDF	Инициализация входа по выключению	X, Y, M, S, T, C	+	+	+
	AND	Логическое умножение (И)	X, Y, M, S, T, C	+	+	+
	ANI	Инверсия логического умножения (И-НЕ)	X, Y, M, S, T, C	+	+	+
	ANDP	«И» по включению	X, Y, M, S, T, C	+	+	+
Контакт	ANDF	«И» по выключению	X, Y, M, S, T, C	+	+	+
Koı	OR	Логическое сложение (ИЛИ)	X, Y, M, S, T, C	+	+	+
	ORI	Инверсия логического сложения (ИЛИ-НЕ)	X, Y, M, S, T, C	+	+	+
	ORP	«ИЛИ» по включению	1 X, Y, M, S, T, C	+	+	+
	ORF	«ИЛИ» по выключению	X, Y, M, S, T, C	+	+	+
	ANB	«И» блок		+	+	+
	ORB	«ИЛИ» блок	HHH-	+	+	+
	OUT	Инициализация выхода	Y, M, S	+	+	+
	SET	Установка состояния	SET Y, M, S	+	+	+
	RST	Сброс состояния	RST Y, M, S, T, C	+	+	+
шка	TMR	Таймер (16 бит)	TMR T	+	+	+
Катушка	CNT	Счетчик (16 бит)	CNT C	+	+	+
	DCNT	Счетчик (32 бит)	DC NT C	+	+	+
	PLS	Генерация импульсов по включению	PLS Y, M, S	+	+	+
	PLF	Генерация импульсов по выключению	PLF Y, M, S	+	+	+
Мастер контроль	MC	Начало вложенного цикла	MC N	+	+	+
Мая	MCR	Конец вложенного цикла	MCR N	+	+	+
Флаг	P	Флаг	P0 – P255	+	+	+
4711dl	I	Флаг прерывания	Ixxx	+	+	+
	•		•	•		

Тип	Код	Функция	Схема	плк				
1 1111	Код	Функция	CACMA	ES/EX/SS	SA/SX	EH		
	MPS	Смещение вниз стека	X0 MPS X1	+	+	+		
	MRD	Считать значение стека	X0 7 X1 Y1	+	+	+		
Контакт	MPP	Выход из стека	MRD X2 M0 Y2 END	+	+	+		
	INV	Инверсия		+	+	+		
	NOP	Пустая строка	Используется в режиме IL для резервирования места в программе	+	+	+		
	END	Конец программы	END	+	+	+		
	STL	Режим последовательного выполнения		+	+	+		
	RET	Выход из режима последовательного выполнения	s> RET	+	+	+		

Дополнительные инструкции

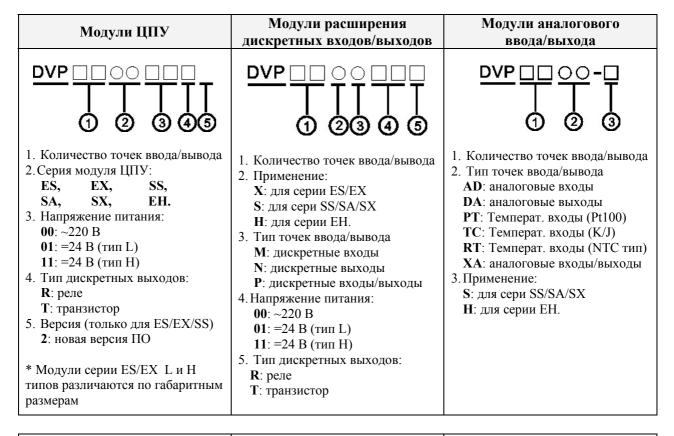
Тип	API	Код	D*	P**	Функция	П	ЛК	
ТИП	AFI		D.	F	Функция	ES/EX/SS	SA/SX	EH
	00	CJ	-	+	Переход к заданной строке	+	+	+
	01	CALL	-	+	Переход к подпрограмме	+	+	+
я	02	SRET	-	-	Конец подпрограммы	+	+	+
пам	03	IRET	-	-	Конец обработки прерывания	+	+	+
Работа с циклами	04	EI	-	-	Разрешение прерывания	+	+	+
īa c	05	DI	-	-	Запрещение прерывания	+	+	+
1607	06	FEND	-	-	Конец главной программы	+	+	+
Pe	07	WDT	-	+	Сброс сторожевого таймера	+	+	+
	08	FOR	-	-	Начало цикла	+	+	+
	09	NEXT	-	-	Конец цикла	+	+	+
	10	CMP	+	+	Сравнение данных	+	+	+
Пересылка и сравнение	11	ZCP	+	+	Сравнение данных в заданном диапазоне	+	+	+
	12	MOV	+	+	Пересылка данных	+	+	+
	13	SMOV	-	+	Пересылка данных со смещением	-	+	+
авн	14	CML	+	+	Пересылка данных с их инвертированием	+	+	+
иср	15	BMOV	-	+	Пересылка блока данных	+	+	+
[ка]	16	FMOV	+	+	Пересылка в несколько адресов	+	+	+
СРП	17	XCH	+	+	Обмен данными	+	+	+
Пере	18	BCD	+	+	Преобразование числа из двоичного вида	+	+	+
		_			в двоично-десятичный			
	19	BIN	+	+	Преобразование из двоично-десятичного	+	+	+
	20	4.00			вида в двоичный			
	20	ADD	+	+	Сложение двух чисел	+	+	+
Математические функции	21	SUB	+	+	Вычитание двух чисел	+	+	+
унк	22	MUL	+	+	Умножение двух чисел	+	+	+
e ф.	23	DIV	+	+	Деление двух чисел	+	+	+
СКИ	24	INC	+	+	Инкрементирование (увеличение на 1)	+	+	+
иче	25	DEC	+	+	Декрементирование (уменьшение на 1)	+	+	+
мат	26	WAND	+	+	Логическое умножение данных (И)	+	+	+
ате	27	WOR	+	+	Логическое сложение данных (ИЛИ)	+	+	+
Σ	28	WXOR	+	+	Исключающее «ИЛИ»	+	+	+
	29	NEG	+	+	Дополнение до 2	+	+	+

T	A DI	т.	D÷	P**			ПЛК	
Тип	API	Код	D*	P**	Функция	ES/EX/SS	SA/SX	EH
	30	ROR	+	+	Циклический сдвиг вправо	+	+	+
	31	ROL	+	+	Циклический сдвиг влево	+	+	+
двиг	32	RCR	+	+	Циклический сдвиг вправо с установкой флага переноса в M1022	+	+	+
ский с	33	RCL	+	+	Циклический сдвиг влево с установкой флага переноса в M1022	+	+	+
Сдвиг и циклический сдвиг	34	SFTR	_	+	Сдвиг значений битовых устройств	+	+	+
ищ	35	SFTL	_	+	вправо Сдвиг значений битовых устройств влево	+	+	+
ЗИГ	36	WSFR	_	+	Сдвиг значений регистров вправо	_	+	+
C	37	WSFL	_	+	Сдвиг значений регистров влево	_	+	+
	38	SFWR	_	+	Запись данных в стек	_	+	+
	39	SFRD	_	+	Чтение данных из стека	_	+	+
	40	ZRST	-	+	Сброс состояния элементов схемы в заданном диапазоне	+	+	+
	41	DECO	_	+	Дешифратор $8 \rightarrow 256$ бит	+	+	+
	42	ENCO	_	+	Шифратор 256 → 8 бит	+	+	+
МИ	43	SUM	+	+	Счетчик единичных битов в регистре	+	+	+
ІНРІ			<u>'</u>	'	Установка единичного бита в заданном	'	'	
дан	44	BON	+	+	разряде регистра	+	+	+
ии с	45	MEAN	+	+	Среднее арифметическое	+	+	+
Операции с данными	46	ANS	_	-	Сигнализация тревоги с задержкой на	-	+	+
0	47	ANR		+	включение Сброс тревожной сигнализации		+	+
	48	SQR	+	+	Вычисление квадратного корня	+	+	+
	40	SQK	'	,	Преобразование числа с плавающей	1	· ·	'
	49	FLT	+	+	точкой в целое	+	+	+
	50	REF	_	+	Обновление состояния входов/выходов	+	+	+
	51	REFF	_	+	Изменение времени задержки входного	-	+	+
	52	MTR			фильтра Матричный ввод		+	+
BbIX	52	MIK	-	-	Установка состояния выхода при	-		
ие вх./	53	HSCS	+	-	высокоскоростном счете	+	+	+
вующ	54	HSCR	+	-	Сброс состояния выхода при высокоскоростном счете	+	+	+
Быстродействующие вх./вых	55	HSZ	+	-	Операция зонного сравнения при высокоскоростном счете	-	+	+
стр	56	SPD	-	-	Вычисление скорости	+	+	+
Бы	57	PLSY	+	-	Импульсный выход	+	+	+
	58	PWM	-	-	Выход ШИМ	+	+	+
	59	PLSR	+	-	Импульсный выход с ускорением/ замедлением	+	+	+
	60	IST	_	-	Ручное/автоматическое управление	+	+	+
	61	SER	+	+	Групповое сравнение данных	_	+	+
_			_1		Последовательное абсолютное		1	
Команды удобства	62	ABSD	+	-	управление Последовательное относительное	-	+	+
цы уд	63	INCD	-	-	управление	-	+	+
ман,	64	TTMR	-	-	Секундомер	-	+	+
Kor	65	STMR	-	-	Специальный таймер	-	+	+
	66	ALT	-	+	Импульсное реле	+	+	+
	67	RAMP	-	-	Линейное изменение сигнала (RAMP)	-	+	+
	69	SORT	-	-	Сортировка данных	-	+	+

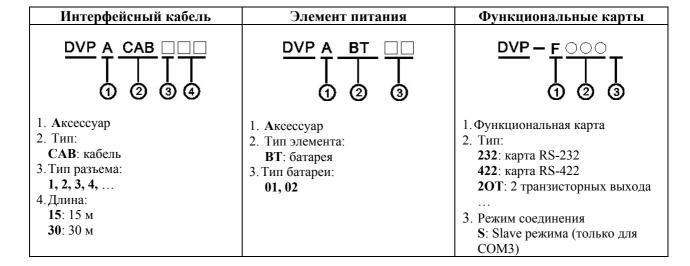
Т	A DI	ICa-	D *	P**	Φ		ПЛК	
Тип	API	Код	D.	F	Функция	ES/EX/SS	SA/SX	EH
	70	TKY	+	-	Ввод с 10-ти кнопочной клавиатуры	-	+	+
-	71	HKY	+	-	Ввод с 16-ти кнопочной клавиатуры	-	+	+
	72	DSW	-	-	Ввод с цифрового переключателя	-	+	+
19)	73	SEGD	-	+	Дешифратор для 7-ми сегментного индикатора	+	+	+
ΙΧΟΊ	74	SEGL	-	-	Вывод на 7-ми сегментный индикатор	+	+	+
I/Bb	75	ARWS		_	Ввод со стрелочной клавиатуры (←↑→↓)	_	+	+
ОДБ	13	ARWS		_	Преобразование символьных кодов	_	'	<u>'</u>
ие вх	76	ASC	-	-	ASCII в числа (HEX)	-	+	+
Внешние входы/выходы	77	PR	-	_	Преобразование НЕХ данных в коды ASCII и их вывод	-	+	+
"					Чтение данных из модулей аналогового			1
	78	FROM	+	+	ввода/вывода (из СК регистров)	+	+	+
					Запись данных в модули аналогового			
	79	TO	+	+	ввода/вывода (в CR регистры)	+	+	+
	00	DC			Команда передачи и приема данных по			
	80	RS	-	-	RS-485	+	+	+
ble	81	PRUN	+	+	Пересылка данных 8-миричном формате	-	+	+
Последовательные данные	82	ASCI	-	+	Преобразование ASCII в HEX	+	+	+
пе д	83	HEX	1	+	Преобразование HEX в ASCII	+	+	+
РНЬ	84	CCD	ı	+	Расчет контрольной суммы	-	+	+
пел					Чтение значения, заданного с			
(OB2	85	VRRD	-	+	потенциометра (встроенного в DVP-	_	+	+
лет					SA/EH или DVP-F6VR)			
Пос	86	VRSC	-	+	Масштаб значения потенциометра	-	+	+
	87	ABS	+	+	Абсолютное значение	+	+	+
	88	PID	+	-	ПИД-регулятор	+	+	+
	89	PLS	-	-	Генерация импульсов по включению	+	+	+
	90	LDP	ı	-	Инициализация входа по включению	+	+	+
ИИ	91	LDF	ı	-	Инициализация входа по выключению	+	+	+
укц	92	ANDP	-	-	«И» по включению	+	+	+
стр	93	ANDF	ı	-	«И» по выключению	+	+	+
НИ	94	ORP	ı	-	«ИЛИ» по включению	+	+	+
HPI	95	ORF	-	-	«ИЛИ» по выключению	+	+	+
сновные инструкции	96	TMR	-	-	Таймер (16 бит)	+	+	+
00	97	CNT	+	-	Счетчик (16 бит)	+	+	+
	98	INV	-	-	Инверсия	+	+	+
	99	PLF	ı	-	Генерация импульсов по выключению	+	+	+
	100	MODRD	-	-	Чтение данных MODBUS через RS-485	+	+	+
	101	MODWR	-	-	Запись данных MODBUS через RS-485	+	+	+
	102	FWD	-	-	Команда «ПУСК» вперед для привода VFD-A	+	+	+
BUS	102	DEM			Команда «ПУСК» реверсивно для		,	<u> </u>
OD	103	REV	-	-	привода VFD-A	+	+	+
M	104	STOP	-	-	Команда «СТОП» для привода VFD-A	+	+	+
Инструкции MODBUS	105	RDST	-	-	Чтение текущего состояния привода VFD-A	+	+	+
стр	106	RSTEF	-		Команда «СБРОС» для привода VFD-A	+	+	+
Ин	107	LRC		+	Расчет контрольной суммы LRC	+	+	+
	107	CRC	-	+	Расчет контрольной суммы СКС	+	+	+
			-	'	Чтение значения с карты DVP-F8ID (8	1	-	+ '-
	109	SWRD	-	+	Пение значения с карты DVI - гото (о	-	+	+

Т	A DI	I/o-	D*	P**	Φ	I	ІЛК	
Тип	API	Код	D^	P^^	Функция	ES/EX/SS	SA/SX	EH
	110	ECMP	+	+	Сравнение двух чисел с плавающей точкой	+	+	+
,					Сравнение двух чисел с плавающей			
	111	EZCP	+	+	точкой в заданном диапазоне	+	+	+
	116	RAD	+	+	Перевод градусов в радианы	_	+	+
	117	DEG	+	+	Перевод радианов в градусы	_	+	+
					Перевод двоичного числа с плавающей			
	118	EBCD	+	+	точкой в десятичное с плавающей точкой	+	+	+
	110	EDIN			Перевод десятичного числа с плавающей			<u> </u>
	119	EBIN	+	+	точкой в двоичное с плавающей точкой	+	+	+
	120	EADD			Сложение двоичных чисел с плавающей			
	120	EADD	+	+	точкой	+	+	+
	121	ECHD			Вычитание двоичных чисел с плавающей			
	121	ESUB	+	+	точкой	+	+	+
	122	EMILI		+	Умножение двоичных чисел с	1		+
	122	EMUL	+	+	плавающей точкой	+	+	+
	123	EDIV	_	+	Деление двоичных чисел с плавающей	1	+	_
кой	123	EDIV	+	+	точкой	+	+	+
Операции с плавающей точкой	124	EXP		+	Вычисление операции с экспонентой в			
ей	124	EXP	+	+	двоичном формате с плавающей точкой	+	+	+
ЮЩ	125	LN	+	+	Вычисление логарифма натурального в	+	+	+
ава	123	LIN			двоичном формате с плавающей точкой	Τ-	丁	
E S	126	LOG	+	+	Вычисление логарифма в двоичном	+	+	+
ии	120	LUG			формате с плавающей точкой	T	Т	
рап	127	ESQR	+	+	Вычисление корня квадратного в	+	+	+
Опе	127	ESQK			двоичном формате с плавающей точкой	T	Т	
	128	POW	+	+	Возведение числа в степень в двоичном	+	+	+
	120	120 FUW	'	,	формате с плавающей точкой	'	'	'
	129	INT	+	+	Преобразование двоичного числа с	+	+	+
					плавающей точкой в целое			
	130	SIN	+	+	Вычисление синуса	+	+	+
	131	COS	+	+	Вычисление косинуса	+	+	+
	132	TAN	+	+	Вычисление тангенса	+	+	+
	133	ASIN	+	+	Вычисление арксинуса	-	+	+
	134	ACOS	+	+	Вычисление арккосинуса	-	+	+
	135	ATAN	+	+	Вычисление арктангенса	-	+	+
	136	SINH	+	+	Вычисление гиперболического синуса	-	+	+
	137	COSH	+	+	Вычисление гиперболического косинуса	-	+	+
	138	TANH	+	+	Вычисление гиперболического тангенса	-	+	+
	143	DELAY	-	+	Задержка выполнения	-	+	+
	144	GPWM	_	_	Общая команда генерации импульсов	_	+	+
					ШИМ	_		
	145	FTC	-	-	Температурный контроллер (FTC)	-	+	+
1	147	SWAP	+	+	Перестановка младшего и старшего байтов в регистре	+	+	+
HATE	148	MEMR	+	+	Чтение данных из файловых регистров	_	+	+
ома	149	MEMW	+	+	Запись данных в файловые регистры	_	+	+
Дополнительные команды					Чтение/запись данных MODBUS через			
PHP	150	MODRW	-	-	RS-485	+	+	+
пел	151	PWD	_	-	Импульсная ловушка	_	-	+
JIHIE					Начало подпрограммы обработки			,
ОПО	152	RTMU	-	-	временного прерывания	-	-	+
Д	152	153 PTMD			Конец подпрограммы обработки			,
	153	RTMD	-	_	временного прерывания	-	_	+
L					1 T "			

Тип	API	Код	D*	P**	Функция		ПЛК	
	154	RAND		+	·	ES/EX/SS	SA/SX +	EH +
	154	KAND	-	+	Генератор случайных чисел Чтение абсолютного текущего	-	+	+
пел	155	ABSR	+	-	положения	-	-	+
Управление положением	156	ZRN	+	_	Выход в ноль	_	_	+
10110					Импульсный выход с заданием частоты и			
ие п	157	PLSV	+	-	направления вращения серводвигателя	-	-	+
лен	4.50	DDI//			Команда перемещения в заданное			
ıpaB	158	DRVI	+	-	положение в относительных координатах	-	-	+
Y	159	DRVA	+		Команда перемещения в заданное			+
	159	DKVA		-	положение в абсолютных координатах	-	_	
	160	TCMP	-	+	Сравнение времени	-	+	+
	161	TZCP	_	+	Сравнение времени в заданном	_	+	+
				<u> </u>	диапазоне			
арь	162	TADD	-	+	Сложение времени	-	+	+
Календарь	163	TSUB	-	+	Вычитание времени	-	+	+
Кал	166	TRD	-	+	Чтение текущего значения часов	-	+	+
					реального времени Изменение значения часов реального			
	167	TWR	-	+	времени	-	+	+
	169	HOUR	+	_	Часовой счетчик	-	+	+
_ %	170	GRY	+	+	Преобразование целого числа в код Грея	-	+	+
Код Грея	171	GBIN	+	+	Преобразование кода Грея в целое число	-	+	+
	180	MAND	-	+	Логическое умножение матриц (И)	-	-	+
	181	MOR	-	+	Логическое сложение матриц (ИЛИ)	-	-	+
МИ	182	MXOR	-	+	Исключающее «ИЛИ» для матриц	-	-	+
ицаг	183	MXNR	-	+	Исключающее «НЕ-ИЛИ» для матриц	-	-	+
Операции с матрицами	184	MINV	-	+	Инверсия матрицы	-	-	+
C	185	MCMP	-	+	Сравнение матриц	-	-	+
иип	186	MBRD	-	+	Чтение битов в матрице	-	-	+
гера	187	MBWR	-	+	Запись битов в матрицу	-	-	+
O	188	MBS	-	+	Сдвиг битов в матрице	-	-	+
	189	MBR	-	+	Циклический сдвиг битов в матрице	-	-	+
	190	MBC	-	+	Счетчик битов	-	-	+
KH	196	HST	-	+	Высокоскоростной счетчик	-	-	+
ров	107	DI CT		l .	Автоматический пошаговый режим			
thi ro y	197	PLST	-	+	задания выходной частоты с различной	-	+	-
лан <u>д</u> 20ко	198	PLSK	-	+	длительностью шагов -//-//- с одной длительностью шагов	-	+	
Команды высокого уровня	198	PLSA	-	+	-//-//- с однои длительностью maroв -//-//- с плавным разгоном/замедлением	-	+	-
	215	LD&	+	-	Контакт замкнут, если S1 & S2 \neq 0	-	+	+
	216	LD	+	_	Контакт замкнут, если $S1 \& S2 \neq 0$ Контакт замкнут, если $S1 S2 \neq 0$	_	+	+
ша	217	LD [^]	+	-	Контакт замкнут, если S1 $ S2 \neq 0 $ Контакт замкнут, если S1 $ S2 \neq 0 $	-	+	+
'0 TIE					Последовательный контакт замкнут, если			
THOL	218	AND&	+	-	S1 & S2 \neq 0	-	+	+
Tak	210				Последовательный контакт замкнут, если			
кон	219	AND	+	-	$S1 \mid S2 \neq 0$	-	+	+
ции	220	ANIDA			Последовательный контакт замкнут, если			
epa	220	AND^	+	-	$S1 \wedge S2 \neq 0$	-	+	+
е оп	221	OR&	+	_	Параллельный контакт замкнут, если		+	+
ски	221	UKA		_	S1 & S2 ≠ 0	-	7	
Логические операции контактного типа	222	OR	+	_	Параллельный контакт замкнут, если	_	+	+
Лоі			<u> </u>		S1 S2 ≠ 0		<u> </u>	<u> </u>
	223	OR^	+	_	Параллельный контакт замкнут, если	_	+	+
				<u> </u>	S1 ^ S2 ≠ 0			


Тип	API	Код	D*	P**	Функция	Π	ЛК	
1 1111			D	1	Функция	ES/EX/SS	SA/SX	EH
	224	LD=	+	-	Контакт замкнут, если S1 = S2	+	+	+
	225	LD>	+	-	Контакт замкнут, если S1 > S2	+	+	+
	226	LD<	+	-	Контакт замкнут, если S1 < S2	+	+	+
	228	LD<>	+	-	Контакт замкнут, если S1 ≠ S2	+	+	+
	229	LD<=	+	-	Контакт замкнут, если S1 ≤ S2	+	+	+
	230	LD>=	+	-	Контакт замкнут, если $S1 \ge S2$	+	+	+
	232	AND=	+	-	Последовательный контакт замкнут, если $S1 = S2$	+	+	+
па	233	AND>	+	1	Последовательный контакт замкнут, если $S1 > S2$	+	+	+
юго ти	234	AND<	+	-	Последовательный контакт замкнут, если S1 < S2	+	+	+
энтактн	236	AND⇔	+	-	Последовательный контакт замкнут, если $S1 \neq S2$	+	+	+
ения ко	237	AND<=	+	-	Последовательный контакт замкнут, если $S1 \leq S2$	+	+	+
и сравн	238	AND>=	+	-	Последовательный контакт замкнут, если $S1 \ge S2$	+	+	+
Операции сравнения контактного типа	240	OR=	+	-	Параллельный контакт замкнут, если S1 = S2	+	+	+
Õ	241	OR>	+	-	Параллельный контакт замкнут, если S1 > S2	+	+	+
	242	OR<	+	-	Параллельный контакт замкнут, если S1 < S2	+	+	+
	244	OR<>	+	-	Параллельный контакт замкнут, если $S1 \neq S2$	+	+	+
	245	OR<=	+ -		Параллельный контакт замкнут, если $S1 \leq S2$	+	+	+
			Параллельный контакт замкнут, если $S1 \ge S2$	+	+	+		

^{*}D – инструкция может быть 32 бит. В коде инструкции добавляется символ "D": например, пересылка 32 бит данных: DMOV


Подробное описание инструкций можно найти в руководстве по программированию.

^{**}P – возможно импульсное выполнение команды (только для SA/SX/EH). В коде инструкции добавляется символ "Р": например, MOVP

Система обозначения модулей DVP

Спецификация модулей DVP

Модули ЦПУ серии ES

Marana	Напряжение питания	Дискреті	ные входы (DI)	Дискре	Danssans	
Модель		Число	Тип	Число	Тип	Размеры
DVP14ES00R2		8		6		Рис.1
DVP14ES00T2	100 – 240 B	8	DC 24B/5мA PNP или NPN	6	Реле (2A) AC 250B, DC 30B Транзистор (0.3A) DC 530B	1 ис.1
DVP24ES00R2		16		8		Рис.2
DVP24ES00T2	переменного	16		8		
DVP32ES00R2	тока (АС)	16		16		Рис.2
DVP32ES00T2	+10%, -15%	16		16		
DVP60ES00R2		36		24		D 2
DVP60ES00T2		36		24		Рис.3

Модули ЦПУ серии ES (L типа)

Мологи	Напряжение питания	Дискреті	ные входы (DI)	Дискре	Donum	
Модель		Число	Тип	Число	Тип	Размеры
DVP14ES01R2		8		6		Рис.5
DVP14ES01T2	24B	8	DC 24B/5мA PNP или NPN	6	Реле (2A) AC 250B, DC 30B Транзистор (0.3A) DC 530B	гис.3
DVP24ES01R2	постоянного	16		8		
DVP24ES01T2	тока (DC) +20%, -15%	16		8		Drug (
DVP32ES01R2		16		16		Рис.6
DVP32ES01T2		16		16		

Модули ЦПУ серии ЕХ

Модель	Напряжение питания	Дискретные входы (DI)		Дискретные выходы (DO)		Аналоговые входы (AI)		Аналоговые выходы (AO)		Разме
		DI	Тип	DO	Тип	AI	Тип	AO	Тип	ры
DVP20EX00R2	100 – 240 B	8	DC	6	Реле	4	-20+20мА или -10+10B	2	020мА или 010В	Рис.2
DVP20EX00T2	переменного тока (AC) +10%, -15%	8	24B/5мA PNP или NPN	6	Транзи стор	4		2		
DVP20EX11R2	DC 24B	8	INFIN	6	Реле	4		2		

^{*} Рисунки находятся на стр.43

Модули расширения дискретных входов/выходов для серии ES/EX

M	Напряжение	Дискреті	ные входы (DI)	Дискре	тные выходы (DO)	D
Модель	питания	Число	Тип	Число	Тип	Размеры
DVP08XM11N		8		0		Рис.4
DVP16XM11N		16		0		Рис.1
DVP08XN11R		0		8		Рис.4
DVP08XN11T	24В постоянного тока (DC) +20%, -15%	0		8		1 ис.4
DVP16XN11R		0		16		
DVP16XN11T		0		16	Реле (2А)	Рис.2
DVP24XN11R		0	DC 24B/5мA	24	AC 250B, DC 30B Транзистор (0.3A)	1 ис.2
DVP24XN11T		0	PNP или NPN	24		
DVP08XP11R		4		4		Рис.4
DVP08XP11T		4		4		1 ис.4
DVP24XP11R		16		8		
DVP24XP11T		16		8		Рис.2
DVP32XP11R		16		16		1 ис.2
DVP32XP11T		16		16		
DVP24XN00R		0		24	Рада (2 Л.)	
DVP24XN00T	100 – 240 B	0	DC 24D/5- A	24	Реле (2A) AC 250B, DC 30B	
DVP24XP00R	переменного тока (АС)	16	DC 24B/5мA PNP или NPN	8	Транзистор (0.3A) DC 530B	Рис.2
DVP32XP00R	+10%, -15%	16		16		
DVP32XP00T		16		16	DC 330D	

Модули расширения дискретных входов/выходов для серии ES/EX (L типа)

Marana	Напряжение питания	Дискрет	ные входы (DI)	Дискре	Dan	
Модель		Число	Тип	Число	Тип	Размеры
DVP16XM01N		16		0		Рис.5
DVP16XN01R		0		16		
DVP16XN01T		0	DC 24B/5мA PNP или NPN	16	Реле (2A) AC 250B, DC 30B Транзистор (0.3A) DC 530B	1
DVP24XN01R	24B	0		24		
DVP24XN01T	постоянного тока (DC)	0		24		Рис.6
DVP24XP01R	+20%, -15%	16		8		Рис.6
DVP24XP01T		16		8		
DVP32XP01R		16		16		
DVP32XP01T		16		16		

^{*} Рисунки находятся на стр.43

Модули ЦПУ серии SS

Модолу	Напряжение	Дискрети	ные входы (DI)	Дискре	Domony	
Модель	Модель питания		Тип	Число	Тип	Размеры
DVP14ES11R2	24B постоянного	8	DC 24B/5мA	6	Реле (1.5A) AC 250B, DC 30B	Стр.44
DVP14ES11T2	тока (DC) +20%, -15%	8	PNP или NPN	6	Транзистор (0.3A) DC 530B	C1p.44

Модули ЦПУ серии SA

Модолу	Напряжение	Дискреті	ные входы (DI)	Дискре	Danuanii	
Модель питания		Число	Тип	Число	Тип	Размеры
DVP12SA11R	24В постоянного	8	DC 24B/5мA	4	Реле (1.5A) AC 250B, DC 30B	Стр.44
DVP12SA11T	тока (DC) +20%, -15%	8	PNP или NPN	4	Транзистор (0.3A) DC 530B	C1p.44

Модули ЦПУ серии SX

Модель	Напряжение питания	Дискретные входы (DI)		Дискретные выходы (DO)		Аналоговые входы (AI)		Аналоговые выходы (AO)		Разме
		DI	Тип	DO	Тип	AI	Тип	AO	Тип	ры
DVP10SX11R	24B DC +20%, -15%	4	DC	2	Реле	2	-20+20мА	2	20+20мА	
DVP10SX11T		4	24B/5мA PNP или NPN	2	Транзи стор	2	или -10+10B	2	или -10+10B	Стр.44

Модули расширения дискретных входов/выходов для серии SS/SA/SX

M	Напряжение питания	Дискреті	ные входы (DI)	Дискре	D.	
Модель		Число	Тип	Число	Тип	Размеры
DVP08SM11N		8		0		
DVP08SN11R		0		8	- 4-1	
DVP08SN11T	24B	0	DC 24B/5мA PNP или NPN	8	Реле (1.5A) AC 250B, DC 30B Транзистор (0.3A) DC 530B	Стр.44
DVP08SP11R	постоянного	4		4		
DVP08SP11T	тока (DC) +20%, -15%	4		4		
DVP16SP11R		8		8		
DVP16SP11T		8		8		

Модули аналогового ввода/вывода для серии SS/SA/SX

M	Напряжение питания	Ан	алоговые входы	Ана	алоговые выходы	D
Модель		Число	Тип	Число	Тип	Размеры
DVP04AD-S		4	±10В или ±20мА 14бит	0		
DVP04DA-S		0	-	4	010В или 020мА 12 бит	
DVP02DA-S	24B	0	-	2	010В или 020мА 12 бит	
DVP06XA-S	постоянного тока (DC)	4	±10В или ±20мА 12бит	2	010В или 020мА 12 бит	Стр.44
DVP04PT-S	+20%, -15%	4	-200°С+600°С 14бит (0.1°С)	0	-	
DVP04TC-S		4	-100°С+1000°С 14бит (0.1°С)	0	-	
DVP08RT-S		8	-20°C+150°C 12бит (0.1°C)	0	- -	

Источники питания

Модель	Входное напряжение	Выходное напряжение	Размеры
DVPPS01	100 – 240 В переменного тока (AC) +10%, -15%	24В постоянного тока, 1А	Стр.44
DVPPS02	100 – 240 В переменного тока (AC) +10%, -15%	24В постоянного тока, 2А	Стр.44

Модули ЦПУ серии ЕН

M	Напряжение		Дискретные входы (DI)		Дискретные выходы (DO)	
Модель	питания	Число	Тип	Число	Тип	Размеры
DVP16EH00R		8		8		
DVP16EH00T		8		8		
DVP20EH00R		12		8		
DVP20EH00T		12		8		
DVP32EH00R	100 – 240 B	16		16	Реле (2А)	
DVP32EH00T	переменного	16	DC 24B/5мA	16	AC 250B, DC 30B	Стр.45
DVP48EH00R	тока (АС)	24	PNP или NPN	24	Транзистор (0.3А)	C1p.43
DVP48EH00T	+10%, -15%	24		24	DC 530B	
DVP64EH00R		32		32		
DVP64EH00T		32		32		
DVP80EH00R		40		40		
DVP80EH00T		40		40		

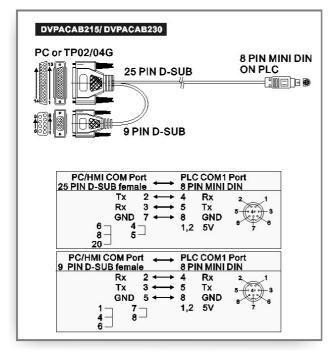
Модули расширения дискретных входов/выходов для серии ЕН

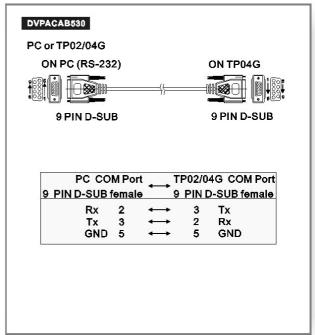
Marari	Напряжение	Дискретные входы (DI)		Дискретные выходы (DO)		Danssansa
модель	Модель питания		Тип	Число	Тип	Размеры
DVP08HM11N		8		0		
DVP16HM11N	24B	16	1	0	Реле (2А)	
DVP08HN11R	постоянного	0	DC 24B/5мA	8	AC 250B, DC 30B Транзистор (0.3A)	Стр.45
DVP08HN11T	тока (DC)	0	PNP или NPN	8		
DVP08HP11R	+20%, -15%	20%, -15%		4	DC 530B	
DVP08HP11T		4		4		
DVP32HP11R	100 – 240 B	16		16	Реле (2А)	
DVP32HP11T	переменного	16	DC 24B/5мA	16	AC 250B, DC 30B	Стр.45
DVP48HP11R	тока (АС)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PNP или NPN	24	Транзистор (0.3А)	C1p.43
DVP48HP11T	+10%, -15%	24		24	DC 530B	

Модули аналогового ввода/вывода для серии ЕН

Напряжение		Ан	Аналоговые входы		Аналоговые выходы	
Модель	питания	Число	Тип	Число	Тип	Размеры
DVP04AD-H		4	±10В или ±20мА 14бит	0	-	
DVP04DA-H	24B	0	-	4	010В или 020мА 12 бит	
DVP06XA-H	постоянного тока (DC)	4	±10В или ±20мА 12бит	2	010В или 020мА 12 бит	Стр.45
DVP04PT-H	+20%, -15%	4	-200°С+600°С 14бит (0.1°С)	0	-	
DVP04TC-H		4	-100°C+1000°C 14бит (0.1°C)	0	-	

Специальные модули расширения для серии ЕН

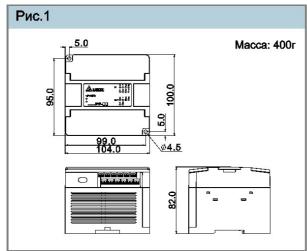

Модель	Напряжение питания	Входы	Выходы	Размеры
DVP01PU-H		-	1 импульсный выход: 200кГц	
DVP01HC-H	24B DC +20%, -15%	1 счетчик: 200кГц, вх. сигналы: +5/+12/+24В	-	
DVP02HC-H	12070, 1370	2 счетчика: 200кГц, +24B вх. сигналы: +24B	-	Стр.45
DVP08BD-H	24B DC от	8 DIP переключателей	-	
DVP08KY-H	модуля ЦПУ	Матричная клавиатура (8 x 8 кнопок макс.)	-	

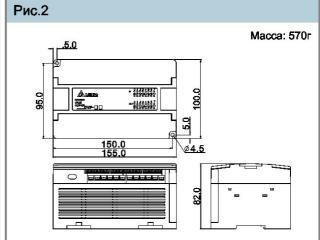

Функциональные карты расширения для DVP-EH

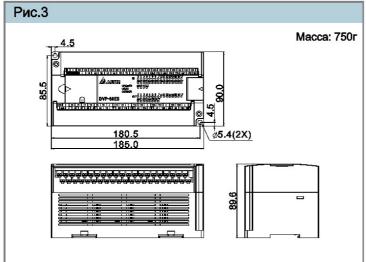
Обозначение	Функция и возможное применение	Разъем
DVP-F4IP	Дополнительные 4 дискретных входа (оптоизоляция).	Клеммная колодка
DVP-F20T	Дополнительные 2 транзисторных выхода.	Клеммная колодка
DVP-F2DA	2 аналоговых выхода (12 бит).	Клеммная колодка
DVP-F2AD	2 аналоговых входа (12 бит).	Клеммная колодка
DVP-F232S	Дополнительный коммуникационный порт RS-232 (COM3).	DB9 гнездо
DVP-F485S	Дополнительный коммуникационный порт RS-485 (COM3).	Клеммная колодка
DVP-F8ID	8 DIP переключателей.	1
DVP-F232	Модификация СОМ2 в RS-232.	DB9 гнездо
DVP-F422	Модификация СОМ2 в RS-422.	Клеммная колодка
DVP-F6VR	6 поворотных потенциометров.	-
DVP-256FM	Карта памяти	1

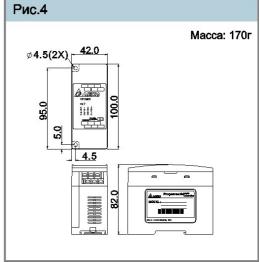
Аксессуары для контроллеров DVP

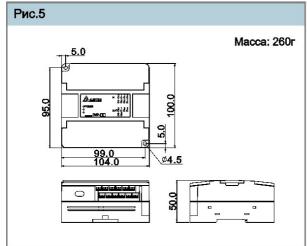
Аксесуары для контроллеров D 11				
Модель	Назначение	Примечание		
DVPACAB115	Кабель связи: НРР02 ↔ ПЛК / 1.5м	Идет в комплекте с программатором DVPHPP02		
DVPACAB215	Кабель связи: ПК(D-SUB 9pin и 25pin) ↔ ПЛК / 1.5м	Для программирования ПЛК, а		
DVPACAB2A30	Кабель связи: ПК(D-SUB 9pin) ↔ ПЛК / 3м	также для связи ПЛК с		
DVPACAB230	Кабель связи: ПК(D-SUB 9pin и 25pin) ↔ ПЛК / 3м	операторской панелью TP04G		
DVPACAB315	Кабель связи: НРР02 ↔ ПК / 1.5м	Для записи/чтения программы из ПК в программатор		
DVPACAB403	Кабель модулей расширения / 30 см	Для ES/EX серии		
DVPACAB530	Кабель связи: TP04G \leftrightarrow ПК / 1.5м	Для программирования операторских панелей TP04G и TP02G		
DVPABT01	Литиевая батарейка 3.6В	Для EH/SX/SA модулей ЦПУ		
DVPABT02	Литиевая батарейка 3.6В	Для TP04G		

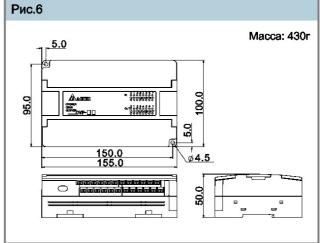


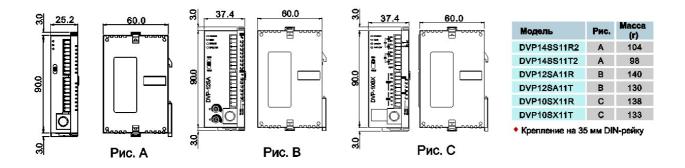

Периферийные устройства для контроллеров DVP

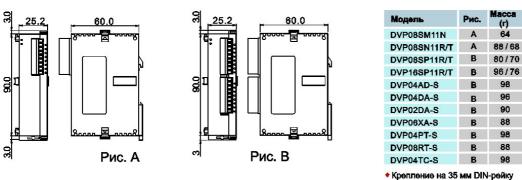

Вид	Модель	Название	Назначение	
A MARTINE CONTRACTOR OF THE PARTY OF THE PAR	DVPHPP02	Ручной программатор	 Чтение, запись и редактирование программы всех контроллеров DVP. Отображение и изменение состояния всех внутренних устройств (реле, регистры и т.д.). Внутренняя память может сохранять программу до 3-5 дней. Встроенная карта памяти позволяет постоянно хранить программу и также позволяет обмениваться данными с DVP-EH. 	
12 - 30 - 50 • • • • • •	DVPDU01	Цифровая установочная панель	 Может использоваться со всеми сериями DVP для отображения и изменения состояния всех внутренних устройств (реле, регистры и т.д.), а также для копирования программы. Вставляется в слот расширения DVP-ЕН и устанавливается непосредственно в его корпусе. К модулям ЦПУ других серий можно подключить через порт RS-232 с помощью соединительного кабеля. 	
AMPZZ TECTA • mm • mm • mm • mm	TP04G-AS2	Панель оператора	 Графический ЖК-дисплей с разрешением 128х64. (4 строки по 8 символов) Многоязыковая поддержка (в том числе русский язык). Три коммуникационных порта (RS-232/422 и RS-485) могут использоваться одновременно. Часы реального времени. Множество форм графических элементов. 	
Abetiz	TP02G-AS1	Панель оператора	 Графический ЖК-дисплей с разрешением 160х32. (2 строки по 10 символов) Многоязыковая поддержка (в том числе русский язык). Два коммуникационных порта (RS-232 и RS-485) могут использоваться одновременно. Часы реального времени. Множество форм графических элементов. 	
TP-PCC TP-PCC-TP	TP-PCC	Карта копирования программы	Для операторских панелей TP02G и TP04G	
	WPLSoft	Пакет программирования контроллеров DVP		
	TPEdit	Пакет программирования операторских панелей TP02G и TP04G		


Габаритно-установочные размеры модулей DVP

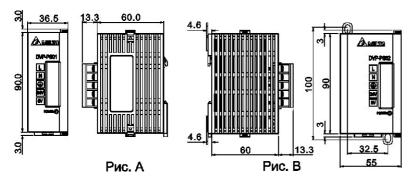

Модули ЦПУ и модули расширения серии ES/EX



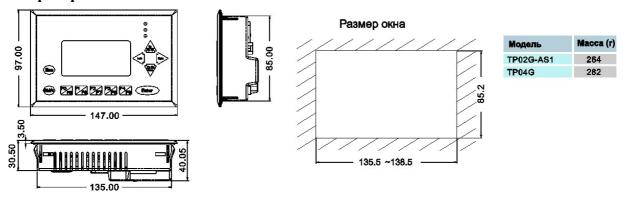


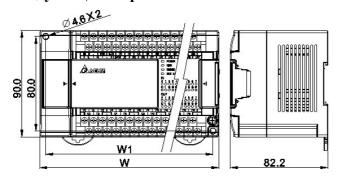


^{*} Спецификации модулей на стр. 36,37


Модули ЦПУ серии SS/SA/SX

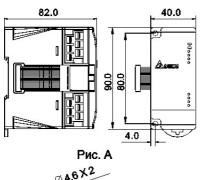
Модули расширения входов/выходов серии SS/SA/SX

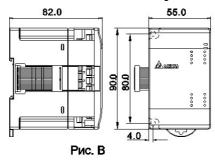

Источник питания

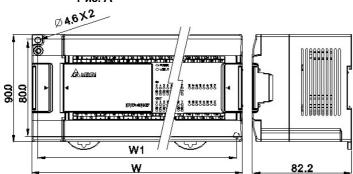

Модель	Рис.	Macca (r)
DVPPS01	Α	158
DVPPS02	В	250

◆ Крепление на 35 мм DIN-рейку

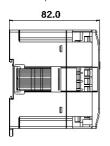
Операторская панель TP04G и TP02G

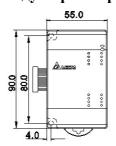


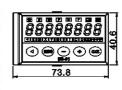

Модули ЦПУ серии ЕН

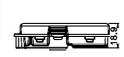

W(mm)	W1(mm)	Macca (r)
113	103	500 / 480
113	103	520 / 500
143.5	133.5	652 / 612
174	164	748 / 688
212	202	836 / 756
276	266	948/848
	113 113 143.5 174 212	113 103 113 103 143.5 133.5 174 164 212 202

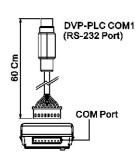
Модули расширения дискретных входов/выходов серии ЕН




Модель	Рис.	Macca (r)
DVP08HM11N	Α	124
DVP16HM11N	В	160
DVP08HN11R/T	Α	130 / 120
DVP08HP11R/T	Α	136 / 116
DVP08KY-H	Α	98
DVP08BD-H	Α	100


Модель	W(mm)	W1(mm)	Macca (r)
DVP32HP00R/T	143.5	133.5	438/398
DVP48HP00R/T	174	164	616 / 576


Специальные модули расширения серии ЕН и цифровая панель



Модель	Macca (r)
DVP04AD-H	200
DVP04DA-H	228
DVP04PT-H	226
DVP04TC-H	198
DVP06XA-H	198
DVP01HC-H	196
DVP02HC-H	198
DVP01PU-H	216

