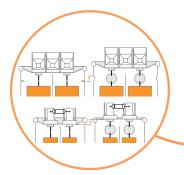
CP

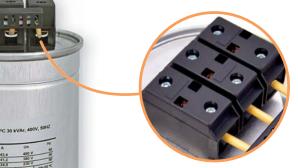
КОНДЕНСАТОРЫ ТРЕХФАЗНЫЕ	25
КОНТАКТОРЫ ДЛЯ КОНДЕНСАТОРНЫХ БАТАРЕЙ	26
РЕГУЛЯТОРЫ РЕАКТИВНОЙ МОЩНОСТИ	26
высоковольтные силовые конденсаторы	27
ФИЛЬТРУЮЩИЕ ДРОССЕЛИ	27

КОМПОНЕНТЫ СИСТЕМ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ

Конденсаторы трехфазные

Особенности конденсаторных батарей




ightarrow Для снятия остаточного напряжения все конденсаторные батареи оснащены разрядными резисторами (время разряда \leq 3 минуты до 75 V)

→ Кондесаторы 1... 5 kVar подключаются с помощью двойного штекера FASTON (в комплект поставки входит крышка, обеспечивающая защиту от прикосновения к токоведущим частям)

→ Все конденсаторные батареи оснащены защитой от избыточного давления

→ Подключение конденсаторов 10... 50 kVar осуществляется с помощью туннельных клемм с защитой от прикосновения к токоведущим частям (универсальный винт под шлицевую отвертку + "Imbus" - шестигранный ключ)

→ Возможность монтажа конденсаторных батарей как в вертикальном, так и в горизонтальном положении

 \rightarrow Резьбовой вывод снизу (крепление + заземление)

ightarrow Номинальная мощность от 1 до 50 kVAr

ightarrow Номинальное напряжение 400, 440 V (460, 480, 525 - под заказ)

Конденсаторы трехфазные

Применение - Конденсаторы используются для корректировки коэффициента мощности индуктивных потребителей (трансформаторов, электрических двигателей, ректификаторов) в электрических сетях для напряжений до 660 В.

Конструкция

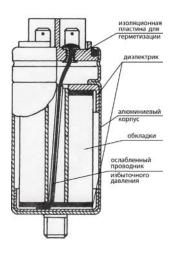
Конденсаторы компенсации реактивной мощности состоят из цилиндрического алюминиевого корпуса, внутри которого установлен диэлектрик с тремя полипропиленовыми слоями, металлизированными алюминием и цинком. Данное покрытие обеспечивает низкий уровень потерь и высокую устойчивость к высоким импульсным токам, а также способствует самовосстановлению конденсатора при пробое. В зависимости от величины рабочего напряжения полипропиленовая пленка имеет различную толщину. При этом слои металлизации выступают в роли проводников тока (т.е. обкладок), а полипропилен является диэлектриком.

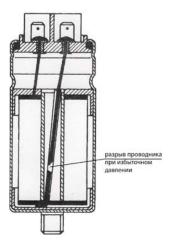
После выполнения необходимых технологических операций и прохождения контроля качества емкостные элементы (рулоны) помещаются в алюминиевые цилиндрические корпуса и заливаются полиуретановой смолой, нетоксичной и обладающей высокими экологическими свойствами.

Применение конденсаторов с напряжением 400 и 440В.

Так как напряжение напрямую влияет на реактивную мощность конденсатора, мы предлагаем линейку конденсаторов с номинальным напряжением Un – 400 и 440В. В сетях 380В, со стабильными параметрами напряжения сети, рекомендовано применять конденсаторы с Un – 400В, в этом случае применение конденсаторов с Un – 440В нецелесообразно, потому что номинальная мощность уменьшается до ~ 25%. Согласно стандарта EN-60831.1-2, конденсаторы на промышленной частоте должны выдерживать напряжение величиной 1,10*Un (1.10*400 = 440В) в течение не менее 8 часов в сутки. В случаях, когда повышенное напряжение сети сохраняется более 8 часов, необходимо применять конденсаторы с Un – 440В. Применение данного типа конденсатора гарантирует надежную работу в сети с повышенным напряжением и увеличение срока службы конденсатора.

Защита от избыточного давления


Для обеспечения защиты внутренних элементов конденсатора применяется разъединитель, который срабатывает при возникновении избыточного давления. Назначением устройства является прерывание тока короткого замыкания при достижении конденсатором окончания срока службы и его неспособности к последующему восстановлению. Это устройство разрывает электрическую цепь конденсатора, используя внутреннее давление, которое возникает во время разрушения пленки от перегрева, вызванного током короткого замыкания.


Остаточное напряжение

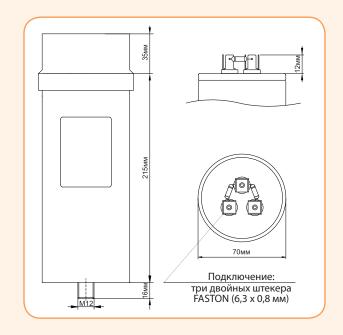
После отсоединения конденсатора от сети на его выводах еще присутствует остаточное напряжение, которое представляет опасность для обслуживающего персонала. Для его устранения все трехфазные конденсаторы снабжены разрядными сопротивлениями, которые снижают уровень напряжения до уровня меньше чем 75В за 3 минуты.

Технология производства и самовосстановление конденсаторов

Исходным материалом для производства конденсаторов служит полипропиленовая пленка. В начале технологического процесса происходит металлизация полипропиленовой пленки для формирования на ней токопроводящего слоя толщиной 10-50 нм из смеси цинка и алюминия. Применение материала с указанными характеристиками позволяет добиться получения эффекта самовостановления в случае возникновения пробоя диэлектрика между обкладками конденсатора. При этом электрическая энергия испаряет металл вокруг поврежденного места и тем самым предотвращает короткое замыкание. Потеря емкости в течении данного процесса, совсем незначительна (около 100рF). Способность к самовосстановлению гарантирует высокую операционную надежность и длительный срок эксплуатации конденсатора. Для сведения к минимуму тангенса угла диэлектрических потерь, на торцы конденсаторных секций наносится в два слоя покрытие из цинка, которое получило название цинковый крепленый край. За счет этого достигается более плотный контакт между выводами конденсатора и конденсаторной секцией. На всех стадиях технологического процесса производства конденсаторов проводиться измерение основных параметров изделия.

Самовосстановление конденсаторов.

- 1 металлизированный слой
- 2 слой полипропилена
- 3 место пробоя
- 4 место испарения металлизированого слоя

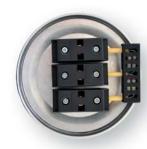


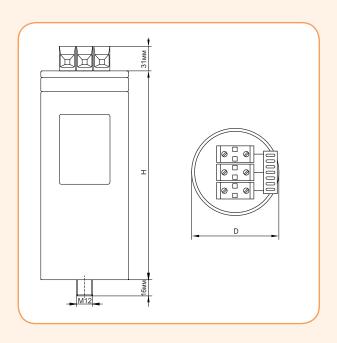
Для обеспечения надежного естественного охлаждения, растояние между конденсаторными батареями должно быть: 2,5 – 25 kVAr не менее 25мм. 30 – 50 kVAr не менее 50мм.

Конденсаторы трехфазные LPC

Техниче	Технические характеристики:							
Номиналь	ное напряжение U	400, 440 V (460, 480, 525 V -под заказ)						
Номиналь	ная частота	50 Hz (60 Hz - под заказ)						
Допуск отк	лонения емкости	- 5 % до + 15 %						
Патапии	- Диэлектрические	< 0,2 W/kVAr						
Потери:	- Суммарные	< 0,45 W/kVAr						
Степень за	щиты	IP 20						
Время раз	ряда	≤ 3 мин. 75 V						
Соответств	ие стандартам	IEC 60831 - 1/2						
Безопасно	СТЬ	самовосстановление диэлектрика, разъединитель избыточного давления						
Диэлектри	К	металлизированная полипропиленовая пленка;						
Рабочая те	мпература	- 25 °C до + 55 °C						
Температу	ра хранения	- 40 °C до + 70 °C						
Допустима	я перегрузка	1,1 × Un (номин. напряжение) / 1,5 × In (номин. ток)						
Номиналы	ный срок службы	120 000 ч. (темп. класс С)						
Пусковой т	ОК	200 × In макс.						
Проведенн	ные испытания	- между слоями 2,15 × Un, AC, 2 с. - слои - корпус 3,6 kV, AC, 2 с.						

Номинальное напряжение и частота	Тип	Код	Номинальная мощность (kVAr)	Номинальная ёмкость (µF)	Номинальный ток 50 Гц (A)	Вес (кг)	Упаковка (шт.)
	LPC 1 kVAr, 400V, 50Hz	4656700	1	3 x 6,6	1,4	0,75	1
	LPC 1.5 kVAr, 400V, 50HZ	4656701	1,5	3 x 9,9	2,2	0,75	1
400 V	LPC 2.5 kVAr, 400V, 50HZ	4656702	2,5	3 x 16,6	3,6	0,75	1
50 Hz	LPC 3 kVAr, 400V, 50HZ	4656703	3	3 x 19,9	4,3	0,75	1
	LPC 4 kVAr, 400V, 50HZ	4656704	4	3 x 26,5	5,8	0,75	1
	LPC 5 kVAr, 400V, 50HZ	4656705	5	3 x 33,2	7,2	0,75	1
	LPC 2.5 kVAr, 440V, 50HZ	4656710	2,5	3 x 13,7	3,3	0,75	1
440 V	LPC 3 kVAr, 440V, 50HZ	4656711	3	3 x 16,4	3,9	0,75	1
50 Hz	LPC 4 kVAr, 440V, 50HZ	4656712	4	3 x 21,9	5,2	0,75	1
	LPC 5 kVAr, 440V, 50HZ	4656713	5	3 x 27,4	6,6	0,75	1
	LPC 2.5 kVAr, 460V, 50HZ	4656720	2,5	3 x 12,5	3,1	0,75	1
460 V	LPC 3 kVAr, 460V, 50HZ	4656721	3	3 x 15	3,8	0,75	1
50 Hz	LPC 4 kVAr, 460V, 50HZ	4656722	4	3 x 20,1	5	0,75	1
	LPC 5 kVAr, 460V, 50HZ	4656723	5	3 x 25,1	6,3	0,75	1
	LPC 2.5 kVAr, 480V, 50HZ	4656730	2,5	3 x 11,5	3	0,75	1
480 V	LPC 3 kVAr, 480V, 50HZ	4656731	3	3 x 13,8	3,6	0,75	1
50 Hz	LPC 4 kVAr, 480V, 50HZ	4656732	4	3 x 18,4	4,8	0,75	1
	LPC 5 kVAr, 480V, 50HZ	4656733	5	3 x 23	6	0,75	1
	LPC 2.5 kVAr, 525V, 50HZ	4656740	2,5	3 x 9,6	2,7	0,75	1
525 V	LPC 3 kVAr, 525V, 50HZ	4656741	3	3 x 11,5	3,3	0,75	1
50 Hz	LPC 4 kVAr, 525V, 50HZ	4656742	4	3 x 15,4	4,4	0,75	1
	LPC 5 kVAr, 525V, 50HZ	4656743	5	3 x 19,2	5,5	0,75	1





Конденсаторы трехфазные LPC

			Ном.	Ном.	Ном. ток	D-диаметр	Сечение		
Un (\) Тип	Код	мощность	ёмкость	ln	Х	подкл.	Bec	Упаковка
fn (Ha	2)	КОД	Qn	Cn	50 Гц	Н-высота	проводн.	(кг)	(шт.)
			(kVAr)	(μF)	(A)	(MM)	(MM²)		
	LPC 10 kVAr, 400V, 50HZ	4656750	10	3 x 66,3	14,4	85 x 215	6	1,6	1
	LPC 12.5 kVAr, 400V, 50HZ	4656751	12,5	3 x 82,9	18	100 x 215	10	2,2	1
	LPC 15 kVAr, 400V, 50HZ	4656752	15	3 x 99,5	21,7	100 x 215	10	2,2	1
400	LPC 20 kVAr, 400V, 50HZ	4656753	20	3 x 132,6	28,9	100 x 215	10	2,2	1
50 H	z LPC 25 kVAr, 400V, 50HZ	4656754	25	3 x 165,8	36,1	100 x 300	10	2,9	1
	LPC 30 kVAr, 400V, 50HZ	4656755	30	3 x 198,9	43,3	120 x 300	25	3,9	1
	LPC 40 kVAr, 400V, 50HZ	4656756	40	3 x 265,3	57,7	136 x 300	50	5,1	1
	LPC 50 kVAr, 400V, 50HZ	4656757	50	3 x 331,6	72,2	136 x 300	50	5,1	1
	LPC 10 kVAr, 440V, 50HZ	4656760	10	3 x 54,8	13,1	85 x 215	6	1,6	1
	LPC 12.5 kVAr, 440V, 50HZ	4656761	12,5	3 x 68,5	16,4	100 x 215	10	2,2	1
	LPC 15 kVAr, 440V, 50HZ	4656762	15	3 x 82,2	19,7	100 x 215	10	2,2	1
440	LPC 20 kVAr, 440V, 50HZ	4656763	20	3 x 109,6	26,2	100 x 300	10	2,9	1
50 H	z LPC 25 kVAr, 440V, 50HZ	4656764	25	3 x 137	32,8	100 x 300	10	2,9	1
	LPC 30 kVAr, 440V, 50HZ	4656765	30	3 x 164,4	39,4	120 x 300	25	3,9	1
	LPC 40 kVAr, 440V, 50HZ	4656766	40	3 x 219,2	52,5	136 x 300	50	5,1	1
	LPC 50 kVAr, 440V, 50HZ	4656767	50	3 x 274	65,6	136 x 300	50	5,1	1
	LPC 10 kVAr, 460V, 50HZ	4656770	10	3 x 50,1	12,6	85 x 215	6	1,6	1
	LPC 12.5 kVAr, 460V, 50HZ	4656771	12,5	3 x 62,7	15,7	100 x 215	10	2,2	1
	LPC 15 kVAr, 460V, 50HZ	4656772	15	3 x 75,2	18,8	100 x 215	10	2,2	1
4601	, LPC 20 kVAr, 460V, 50HZ	4656773	20	3 x 100,3	25,1	100 x 300	10	2,9	1
460	1 PC 25 kVAr 460V 50H/	4656774	25	3 x 125,4	31,4	100 x 300	10	2,9	1
50 H	LPC 30 kVAr, 460V, 50HZ	4656775	30	3 x 150,4	37,7	120 x 300	25	3,9	1
	LPC 30.8 kVAr, 460V, 50HZ	4656776	30,8	3 x 154,4	38,7	120 x 300	25	3,9	1
	LPC 40 kVAr, 460V, 50HZ	4656777	40	3 x 200,6	50,2	136 x 300	50	5,1	1
	LPC 50 kVAr, 460V, 50HZ	4656778	50	3 x 250,7	62,8	136 x 300	50	5,1	1
	LPC 10 kVAr, 480V, 50HZ	4656780	10	3 x 46,1	12	85 x 215	6	1,6	1
	LPC 12.5kVAr, 480V, 50HZ		12,5	3 x 57,6	15	100 x 215	10	2,2	1
	LPC 15 kVAr, 480V, 50HZ	4656782	15	3 x 69,1	18	100 x 215	10	2,2	1
480	LPC 20 kVAr, 480V, 50HZ	4656783	20	3 x 92,1	24,1	100 x 300	10	2,9	1
50 H	z LPC 25 kVAr, 480V, 50HZ	4656784	25	3 x 115,1	30,1	120 x 300	25	3,9	1
	LPC 30 kVAr, 480V, 50HZ	4656785	30	3 x 138,2	36,1	120 x 300	25	3,9	1
	LPC 40 kVAr, 480V, 50HZ	4656786	40	3 x 184,2	48,1	136 x 300	50	5,1	1
	LPC 50 kVAr, 480V, 50HZ	4656787	50	3 x 230,3	60,1	136 x 300	50	5,1	1
	LPC 10 kVAr, 525V, 50HZ	4656790	10	3 x 38,5	11	85 x 215	6	1,6	1
	LPC 12.5kVAr, 525V, 50HZ		12,5	3 x 48,1	13,7	100 x 215	10	2,2	1
	LPC 15 kVAr, 525V, 50HZ	4656792	15	3 x 57,7	16,5	100 x 215	10	2,2	1
525		4656793	20	3 x 77	22	100 x 300	10	2,9	1
50 H	, , ,	4656794	25	3 x 96,2	27,5	100 x 300	10	2,9	1
	LPC 30 kVAr, 525V, 50HZ	4656795	30	3 x 115,5	33	120 x 300	25	3,9	1
	LPC 40 kVAr, 525V, 50HZ	4656796	40	3 x 154	44	136 x 300	50	5,1	1
	LPC 50 kVAr, 525V, 50HZ	4656797	50	3 x 192,5	55	136 x 300	50	5,1	1
	, , , , , , , , , , , , , , , , , , , ,			,-				,	

Выбор предохранителей

Зашита конденсаторов

Стандарты IEC 60269 и VDE 0636 регламентируют выбор предохранителей для применения в электрических цепях с индуктивной нагрузкой. Данный стандарт не рассматривает случаи, когда коэффициент мощности соѕ ф меньше <0.1, либо нагрузка носит емкостной характер. В настоящее время стандарты, сертификационные испытания параметров и характеристик отключения предохранителей, распространяются только на индуктивные нагрузки и являются недействительными для емкостных нагрузок. Несмотря на это, возможно применение предохранителей с характеристикой отключения gG для защиты конденсаторов компенсации реактивной мощности, при условии соблюдения нижеперечисленных правил.

Важно

Предохранители не должны использоваться для защиты конденсаторов от перегрузки. Защита от перегрузки должна осуществляется посредством внутреннего разъединителя избыточного давления, установленного в конденсатор. Плавкие предохранители должны применяться только для защиты от внешнего или внутреннего короткого замыкания конденсаторов или конденсаторной установки. Игнорирование данного правила может привести к повреждению установки компенсации реактивной мощности, в результате разрушения корпуса предохранителя.

При выборе предохранителей для защиты конденсаторов необходимо соблюдать следующие правила:

- Предохранители должны продолжительно выдерживать максимальный рабочий ток конденсаторов, который составляет 1.5 х In. Исходя из данного требования, рекомендуется выбирать предохранитель номиналом 1,6 1,8 от значения номинального тока конденсатора (при сос φ не менее 0,7).
- Предохранители должны выдерживать пусковые токи конденсатора. При коммутации конденсаторов возникает большой пусковой ток, превышающий номинальное значение до 100 раз. Эти скачки тока постепенно уменьшают ресурс предохранителя, что в итоге может привести к его перегреву и ложному срабатыванию. Правильно подобранные предохранители (1,6 -1,8 от номинального тока конденсатора) с использованием электромеханических контакторов для коммутации трехфазных конденсаторов или полупроводниковых контакторов, которые активируются при пересечении напряжением нуля, позволяют избежать негативных воздействий пусковых токов.
- Не допустима продолжительная работа конденсаторов и предохранителей при наличии в сети высших гармоник или резонанса. При номинальной частоте питающей сети, конденсаторы имеют такое сопротивление, при котором исключается вероятность возникновения перегрузки. Устройства генерирующие высшие гармоники, оказывают дополнительную нагрузку на предохранители и конденсаторы. В промышленных сетях высшие гармоники могут достигать значений, сопоставимых с первой гармоникой. В данном случае предохранители, выбранные с меньшими, чем нужно, номинальными токами и напряжением могут перегреться и выйти из строя с последующим разрушением корпуса плавкой вставки. При наличии высших гармоник единственным решением является использование фильтрующих дросселей для защиты установки компенсации реактивной мощности от недопустимых перегрузок.
- Выбор предохранителей необходимо производить с учетом воздействия компенсационного (перетекающего) тока, который возникает между близлежащими конденсаторами установки. При переключении конденсатора или при возникновении неисправности, между конденсаторами, которые находятся рядом, начинает протекать компенсационный ток. В данной ситуации, номинальный ток предохранителей для защиты конденсаторов должен быть выбран на несколько порядков выше. Суммарный номинальный ток группы предохранителей должен быть выше минимум в 2,5 раза от номинального тока единичного предохранителя.
- Предохранители должны выдерживать высокое напряжение восстановления. Резонанс и повторное включение (заряд) при разряженных конденсаторах способен генерировать обратное напряжение, которое превосходит значение напряжения сети и как следствие номинальное значение напряжения предохранителей. При снижении тока до нуля, напряжение питания Ue и напряжение конденсатора Un достигают своего максимального значения. При отключении в момент прохождения тока через ноль, напряжение конденсатора остается неизменным, в тот момент, как напряжение питания достигает своего максимального значения с противоположным знаком. Амплитуда напряжения восстановления Uf, приложенного к предохранителю, увеличивается в 2 раза (максимум в 2,5 раз в трехфазных сетях) в течении 5 мс. При возникновении повторного заряда (включении), конденсатор мгновенно меняет свою полярность на противоположную, при этом напряжение восстановления продолжает возрастать. Многократная быстрая перезарядка конденсатора может привести к повреждению предохранителей и остального оборудования электроустановки. Риск отказа предохранителя из-за избыточного напряжения восстановления может быть минимизирован выбором предохранителя с большим значением параметра напряжения по отношению к рабочему напряжению системы, а также использование предохранителей больших габаритных размеров. Также необходимо учитывать требование к времени разряда конденсатора при его повторном включении (обычно это время составляет около 3 мин. и устанавливается управляющим установкой контроллером).

.]]

Выбор предохранителей и сечения подключаемых проводников

		Номі	инальное напрях	кение (3-фазная	я сеть)	
Номинальная		400V, 50Hz			525V, 50Hz	
мощность конденсатора	Номин. ток конденсатора	Предохранитель gL/gG (500V)	Сечение подключаемых проводников	Номин. ток конденсатора	Предохранитель gL/gG (690V)	Сечение подключаемых проводников
Q _N (kVAr)	I _N (A)	(A)	(mm² Cu)	I _N (A)	(A)	(mm² Cu)
2,5	3,6	10	2,5	2,7	10	1,5
5	7,4	16	2,5	5,5	10	1,5
7,5	10,8	20	2,5	8,3	16	2,5
10	14,4	25	4,0	11,0	20	2,5
12,5	18,1	32	6,0	13,8	32	2,5
15	21,6	35	6,0	16,5	25	4,0
20	29,0	50	10,0	22,0	35	6,0
25	36,0	63	10,0	27,5	50	10,0
30	43,0	80	16,0	33,0	63	16,0
40	58,0	100	25,0	44,0	80	25,0
50	72,0	125	35,0	55,0	100	35,0
60	87,0	160	50,0	66,0	125	50,0
75	108,0	160	50,0	82,0	125	50,0
80	115,0	200	70,0	88,0	160	70,0
100	144,0	250	95,0	110,0	200	70,0
120	-	250	-	-	200	-
125	-	315	-	-	200	-
150	-	355	-	-	250	-
175	-	400	-	-	315	-
200	-	500	-	-	315	-
225-250	-	500	-	-	400	-
275/300	-	630	-	-	500	-
350-400	-	800	-	-	630	-

Важно! Значения номинальных токов защитных предохранителей и сечений подключаемых проводников, указанные в таблице (ориентировочные) действительны для нормальных условий работы (при температуре окружающей среды не более 30°С, при отсутствии гармонических искажений в сети и при выполнении требований предъявляемых к сборке такого типа установок и т.п.). Во всех остальных случаях следует внимательно рассчитывать параметры защитных элементов с учетом поправочных коеффициентов и условий эксплуатации.

Значение номинального тока конденсатора при различном напряжении можно пересчитать по соответствующим коэффициентам: (230V - 1.74 / 440V - 0.91 / 480V - 0.83 / 525V - 0.76). Однако следует принять во внимание, что вышеперечисленные значения коэффициентов - условные, т.к. на них оказывают влияние: температура внутри шкафа, качество кабеля, максимальная температура изоляции кабеля, использование одно- или многожильного кабеля, а также его длина.

Формулы расчета

Мощность конденсатора, трехфазного:

$$Q_c = C \cdot 3 \cdot V^2 \cdot 2 \cdot \pi \cdot f_n$$

Пример: 3 x 331.5µF при 400V/50Hz **0.0003315 · 3 · 400² · 314.16 = 50 kVAr**

Резонансная частота (fr) и коэффициент фильтрации (p) в системах с фильтерной компенсацией:

$$f_r = f_n \cdot \sqrt{\frac{1}{p}}$$
 или $p = \left(\frac{f_n}{f_r}\right)^2$

Пример: p=0.07 при частоте 50 Hz f_r = **189 Hz**

Расчет коэффициента мощности $\cos \varphi$:

$$\cos \varphi = \frac{P}{S}$$
 или $\cos \varphi = \sqrt{\frac{1}{1 + \tan \varphi^2}}$ или $\cos \varphi = \sqrt{\frac{1}{1 + \left(\frac{Q}{P}\right)^2}}$

Выбор предохранителя (gG): In (fuse) = $1.6 - 1.8 \cdot I$ (capasitor) Для $U_a = 400V$, U_n (fuse) = 500...690V

Пример: Q_c =25kVAr, U_e =400V I_n (fuse)=1,6 · 36=57,6=> 63A, U_n =500...690V, (gG)

Мощность конденсатора, трехфазного с фильтрующим дросселем:

$$Q_{c} = \frac{C \cdot 3 \cdot V^{2} \cdot 2 \cdot \pi \cdot f_{n}}{1 - p}$$

Фазный ток конденсатора:

Пример: 25 kVAr при 400V

 $25000 / (400 \cdot 1.73) = 36 A$

 $I = \frac{Q_c}{V \cdot \sqrt{3}}$ или $Q_c = I \cdot V \cdot \sqrt{3}$

V - Ном. напряжение (V)

I - Ном. ток (A)

U_е - Напряжение сети (V)

 $f_{\scriptscriptstyle \rm n}$ - Ном. частота сети (Hz)

 f_{r} - Резонансная частота (Hz)

р - Коэффициент фильтрации (%)

Q. - Мощность конденсатора (VAr)

С - Емкость (F, farad)

Р - Активная мощность (W)

S - Полная мощность (VA)

Q - Реактивная мощность (VAr)

Мощность конденсаторов для индивидуальной компенсации двигателей

	Мощнос	ть конден	саторов в к	VAr с учет	ом мощно	сти двигат	елей, врац	цающего м	юмента и н	агрузки
Номин.	3000 o	б/мин	1500 o	б/мин	1000 c	б/мин	750 o	б/мин	500 of	5/мин
мощность двигат.	Холостой	Полная								
(kW)	ход (kVAr)	нагрузка (kVAr)								
5,5	2,2	2,9	2,4	3,3	2,7	3,6	3,2	4,3	4	5,2
7,5	3,4	4,4	3,6	4,8	4,1	5,4	4,6	6,1	5,5	7,2
11	5	6,5	5,5	7,2	6	8	7	9	7,5	10
15	6,5	8,5	7	9,5	8	10	9	12	10	13
18,5	8	11	9	12	10	13	11	15	12	16
22	10	12,5	11	13,5	12	15	13	16	15	19
30	14	18	15	20	17	22	22	25	22	28
37	18	24	20	27	22	30	26	34	29	39
45	19	28	21	31	24	34	28	38	31	43
55	22	34	25	37	28	41	32	46	36	52
75	28	45	32	49	37	54	41	60	45	68
90	34	54	39	59	44	65	49	72	54	83
110	40	64	46	70	52	76	58	85	63	98
132	45	72	53	80	60	87	67	97	75	110
160	54	86	64	96	72	103	81	116	91	132
200	66	103	77	115	87	125	97	140	110	160
250	75	115	85	125	95	137	105	150	120	175

Описание - Необходимая мощность конденсатора вычисляется по следующей формуле:

 $Q_n = 0.9 \cdot U_n \cdot I_{mag} \cdot \sqrt{3}$

гле:

Q - номинальная мощность конденсатора (kVAr)

U, - номинальное напряжение двигателя (кV)

 I_{mag} - намагничивание двигателя (A)

Мощность конденсаторов должна составлять от 35% до 50% от номинальной мощности генератора. Поскольку рабочая мощность генератора подвержена большим колебаниям, мощность подключаемых конденсаторов должна регулироваться автоматически.

Зависимость мощности конденсатора от величины напряжения

Формула зависимости номинальной мощности конденсатора от напряжения в сети

 $(U_e/U_n)^2 \cdot Q_c = Q_f$

гле.

U_e - напряжение сети;

 ${\bf U}_{{\bf n}}$ - номинальное напряжение конденсатора;

 ${\bf Q}_{\rm c}$ - номинальная мощность конденсатора;

 $\boldsymbol{Q}_{\!\scriptscriptstyle f}$ - фактическая мощность конденсатора.

Номинальное напряжение и частота	Номинальная ёмкость (µF)	Номинальная мощность (kVAr) при U _n = 380 V	Номинальная мощность (kVAr) при U _n = 400 V	Номинальная мощность (kVAr) при U _n = 420 V	Номинальная мощность (kVAr) при U _n = 440 V
	3 x 16,6	2,3	2,5	-	-
	3 x 19,9	2,7	3	-	-
	3 x 26,5	3,6	4	-	-
	3 x 33,2	4,5	5	-	-
	3 x 66,3	9,0	10	-	-
400 V	3 x 83,3	11,3	12,5	-	-
50 HZ	3 x 100	13,6	15	-	-
	3 x 133,0	18,1	20	-	-
	3 x 165,8	22,6	25	-	-
	3 x 198,9	27,1	30	-	-
	3 x 265,0	36,1	40	-	-
	3 x 331,5	45,1	50	-	-
	3 x 13,7	1,9	2,1	2,3	2,5
	3 x 16,5	2,2	2,5	2,7	3
	3 x 21,9	3,0	3,3	3,6	4
	3 x 27,4	3,7	4,1	4,6	5
	3 x 54,9	7,5	8,3	9,1	10
440 V	3 x 68,6	9,3	10,3	11,4	12,5
50 Hz	3 x 82,3	11,2	12,4	13,7	15
	3 x 110,0	14,9	16,5	18,2	20
	3 x 137,1	18,6	20,7	22,8	25
	3 x 164,4	22,4	24,8	27,3	30
	3 x 219,0	29,8	33	36,4	40
	3 x 274,0	37,3	41,3	45,6	50

Подбор конденсаторов для компенсации реактивной мощности трансформаторов

	Мощно	сти конденсатор	ов I _п (kVAr) с уче [.]	том первичных	напряжений и на	грузки	
Номин. мощность	5 - 1	0 KV	15 - 2	20 KV	25 - 30 kV		
трансформ. (kW)	Холостой ход (kVAr)	Полная нагрузка (kVAr)	Холостой ход (kVAr)	Полная нагрузка (kVAr)	Холостой ход (kVAr)	Полная нагрузка (kVAr)	
5	0,75	1	0,8	1,1	1	1,3	
10	1,2	1,7	1,5	2	1,7	2,2	
20	2	3	2,5	3,5	3	4	
25	2,5	3,5	3	4	4	5	
75	5	8	6	9	7	11	
100	6	10	8	11	10	13	
160	10	12	12	15	15	18	
200	11	17	14	19	18	22	
250	15	20	18	22	20	25	
315	18	25	20	28	24	32	
400	20	30	22	36	28	40	
500	22	40	25	45	30	50	
630	28	46	32	52	40	62	
1000	45	80	50	85	55	95	
1250	50	85	55	90	60	100	
1600	70	100	60	110	70	120	
2000	80	160	85	170	90	180	
5000	150	180	170	200	200	250	

Компенсироваться должна только реактивная мощность холостого хода трансформатора. Для трехфазных трансформаторов, в зависимости от их мощности, компенсируемая мощность составляет от 3 до 10% от номинальной мощности.

Мощность конденсаторов ограничивается мощностью сварочного трансформатора и составляет от 40 до 50% его полной мощности. В сварочных полупроводниковых выпрямителях постоянного тока мощность составляет 10% от их полной мощности. Для сварочных преобразователей выбор производится так же, как и для электродвигателей переменного тока.

Таблица определения реактивной мощности конденсаторной установки (kVAr), необходимой для достижения заданного $\cos \varphi$

Р - действительная мощность нагрузки

 $\cos\varphi_{\rm 0}$ – $\cos\varphi$ системы без компенсации коэффициента мощности $\cos\varphi_{\rm 1}$ – требуемый $\cos\varphi$

 ${f Q}_{c}$ – реактивная мощность системы компенсации коэффициента мощности, которую необходимо установить

К – коэффициент соотношения $\cos \varphi_0$ и $\cos \varphi_1$ (см. таблицу ниже)

Фактический коэффициент				Heo	бходим	ый коэф	фициен	т мощн	ости - со	s ${m \phi}_{_1}$			
мощности $\cos arphi_0$	0,7	0,75	0,8	0,82	0,84	0,86	0,88	0,9	0,92	0,94	0,96	0,98	1,00
0,5	0,71	0,85	0,98	1,03	1,09	1,14	1,19	1,25	1,31	1,37	1,44	1,53	1,73
0,52	0,62	0,76	0,89	0,94	1	1,05	1,1	1,16	1,22	1,28	1,35	1,44	1,64
0,54	0,54	0,68	0,81	0,86	0,91	0,97	1,02	1,07	1,13	1,2	1,27	1,36	1,56
0,56	0,46	0,6	0,73	0,78	0,83	0,89	0,94	1	1,05	1,12	1,19	1,28	1,48
0,58	0,38	0,52	0,65	0,71	0,76	0,81	0,86	0,92	0,98	1,04	1,11	1,2	1,4
0,6	0,31	0,45	0,58	0,64	0,69	0,74	0,79	0,85	0,91	0,97	1,04	1,13	1,33
0,62	0,25	0,38	0,52	0,57	0,62	0,67	0,73	0,78	0,84	0,9	0,97	1,06	1,27
0,64	0,18	0,32	0,45	0,5	0,55	0,61	0,66	0,72	0,77	0,84	0,91	1	1,2
0,66	0,12	0,26	0,39	0,44	0,49	0,54	0,6	0,65	0,71	0,78	0,85	0,94	1,14
0,68	0,06	0,2	0,33	0,38	0,43	0,48	0,54	0,59	0,65	0,72	0,79	0,88	1,08
0,7		0,14	0,27	0,32	0,37	0,43	0,48	0,54	0,59	0,66	0,73	0,82	1,02
0,72		0,08	0,21	0,27	0,32	0,37	0,42	0,48	0,54	0,6	0,67	0,76	0,96
0,74		0,03	0,16	0,21	0,26	0,32	0,37	0,42	0,48	0,55	0,62	0,71	0,91
0,76			0,11	0,16	0,21	0,26	0,32	0,37	0,43	0,49	0,56	0,65	0,86
0,78			0,05	0,1	0,16	0,21	0,26	0,32	0,38	0,44	0,51	0,6	0,8
0,8				0,05	0,1	0,16	0,21	0,27	0,32	0,39	0,46	0,55	0,75
0,82					0,05	0,1	0,16	0,21	0,27	0,34	0,41	0,49	0,7
0,84						0,05	0,11	0,16	0,22	0,28	0,35	0,44	0,65
0,86							0,05	0,11	0,17	0,23	0,3	0,39	0,59
0,88								0,06	0,11	0,18	0,25	0,34	0,54
0,9									0,06	0,12	0,19	0,28	0,48
0,92										0,06	0,13	0,22	0,43
0,94											0,07	0,16	0,36

Коэффициент К, на который умножается эффективная энергия, расходуемая в kW для определения kVAr необходимого для компенсации коэффициента мощности.

Емкостная реактивная мощность вычисляется по формуле:

 $Q_c = P \cdot K$

Контакторы для конденсаторных батарей CEM CN

CEM 25CN

CEM 22CM

CEM 50CN

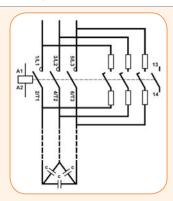
CEM 60CI

CFM 80CN

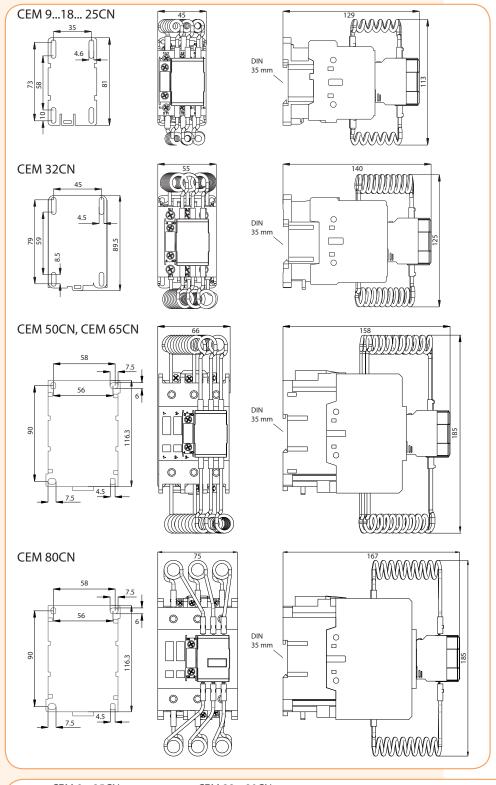
Применение - Предназначены для демпфирования пусковых токов в системах компенсации коэффициента реактивной мощности.

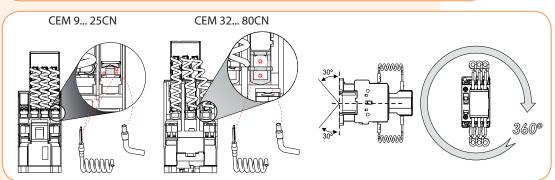
Контакторы для ко	нденса	торн	ых бата	рей (23	0V - 50H	łz)			
			CEM 9CN	CEM 18CN	CEM 25CN	CEM 32CN	CEM 50CN	CEM 65CN	CEM 80CN
Напряжение (V)/	220-230V	kVAr	6	8	11	15	25	30	35
Мощность	380-415V	kVAr	10	15	20	25	40	50	61
конденсатора (kVar)	440V	kVAr	12	16	23	30	45	60	71
16 41 (10 - 5506)	480V	kVAr	12,5	17	25	33	50	65	77
AC-6b ($t^{\circ} = 55^{\circ}$ C)	660-690V	kVAr	17,5	25	34	45	65	87	106
АС-6b Номинальный ток (I _e)	(55°C)	Α	16	21	30	40	60	77	93
АС-6b Номинальный ток (I _e)	(70°C)	Α	10	15	22	34	50	62	67
Макс. ток предохранителя (gl	L/gG)	Α	25	35	50	63	100	125	160
Сечение подключаемых пров	водников	MM ²	2	х б	2 x 10	16 + 16	35 + 35	35 + 35	35 + 50
Усилие зажатия		N.m.	1 1,7	1 1,7	1,6 3	2,5 4	46	46	5 6,5
Макс. количество коммутаци	ий в час		120						
Макс. количество дополните:	льных конта	ктов		1		3		5	
Электрический ресурс		x10 ³				100			
Габаритные размеры (ш/в/г)	Габаритные размеры (ш/в/г) мм			45/113/129)	55/125/140	66/18	35/158	75/185/167
Код			4642130	4644130	4645130	4646130	4648140	4649140	4650140
Bec		КГ		0,619		0,670	1,370	1,389	1,700

Основной принцип работы:


Контакторы для коммутации трехфазных конденсаторов

В процессе эксплуатации конденсаторных установок компенсации реактивной мощности при регулировании ступеней конденсаторные батареи подвергаются частым переключениям. В отличии от других видов электрооборудования, при коммутации конденсаторных батарей кроме номинального рабочего тока, возникает большой пусковой ток, значительно (до 250 раз) превышающий номинальное значение.


Поэтому для коммутации конденсаторов необходимо использовать специально сконструированные быстродействующие пускатели. В отличие от обычных контакторов они снабжены дополнительной контактной группой, установленной параллельно основной. К вспомогательным контактам с двух сторон последовательно подключены съемные токоограничивающие элементы, состоящие из нескольких витков проводника с высоким удельным сопротивлением. При коммутациях обе группы контактов приводятся в действие одновременно, но из-за меньшего расстояния, лимитируемого упором, вспомогательные контакты замыкаются на несколько миллисекунд раньше основных, пропускают пусковой ток через токоограничивающие элементы, тем самым ограничивая ток конденсаторной батареи и размыкаются через 5 миллисекунд после надежного замыкания основных силовых контактов.


В противном случае броски тока могут привести к повреждению (залипанию) силовой контактной группы и негативно повлиять на срок службы конденсатора. Ограничение пускового тока также позволяет избежать просадок напряжения во время переходных процессов. Такая особенность контактной группы гарантирует стабильную и эффективную работу на протяжении всего срока службы контактора. Пускатели конденсаторов предназначены для прямой коммутации батарей конденсаторов с малой индуктивностью и с малыми внутренними потерями (ЕС 60831, VDE 0560) без дополнительных дросселей. Использование пускателей позволяет снизить пусковой ток батареи конденсаторов до уровня < 70-In без использования дополнительных демпфирующих резисторов и внешних коммутирующих устройств. Контактная группа пускателей устойчива к свариванию при пиковых пусковых токах до 250-In. Все контакторы для конденсаторов снабжены нормально разомкнутыми вспомогательными контактами.

Комплектация "конденсаторными" контакторами (пускателями) сохраняет стабильность характеристик низкоиндуктивных косинусных конденсаторов с малыми собственными потерями (стандарты IEC 70 и 831 1-2) в течение всего их срока службы (100 000...130 000 ч), соизмеримого с ресурсом срабатывания контактора (таблица технических характеристик), и предотвращает возникновение просадок напряжения и импульсных перенапряжений в компенсируемой сети при переключении ступеней КБ.

Габаритные размеры, подключение и монтаж контакторов CEM CN

Контакторы для конденсаторных батарей СЕМ СК

CEM 2 SCK CEM SCK

CFM 7.5CH

CEM 12,5CK

CEM 25CK

CEM 30CK

CEM 50CK

Применение:

Контакторы для коммутации конденсаторных батарей специально сконструированы для регулирования коэффициента мощности (категория применения АС-6b). Контакторы СЕМ 10СК - СЕМ 70СК оснащены вспомогательными контактами со съемными токоограничивающими элементами.

При коммутации конденсатора вначале замыкаются вспомогательные контакты которые существенно ограничивают значение пускового тока.

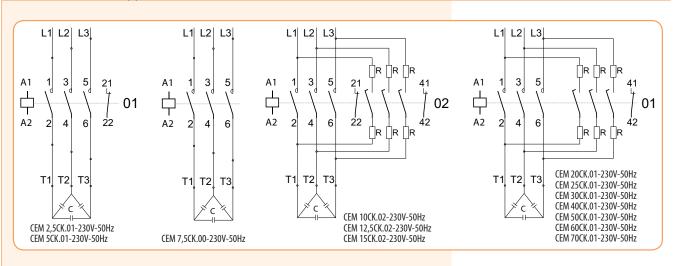
Основные контакты замыкаются через несколько миллисекунд после вспомогательных контактов, пропуская номинальный ток. "Конденсаторные" контакторы выбираются согласно мощности коммутируемых конденсаторов. Для групповой и централизованной систем компенсации реактивной мощности, где не используется фазный реактор, рекомендуется применять контакторы с завышенными номинальными параметрами для выбранного конденсатора.

Преимущества:

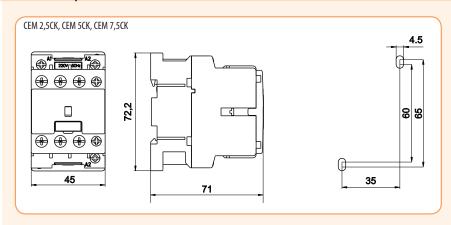
- возможность установки на DIN-рейку или монтажную панель
- соответствие стандартам IEC 60947-1, IEC 60947-4
- встроенные токоогрничивающие элементы
- высокая надежность
- небольшие габаритные размеры
- стандартное напряжение питания 230V AC
- рабочий диапазон температуры до +55 °C без ухудшения характеристик.

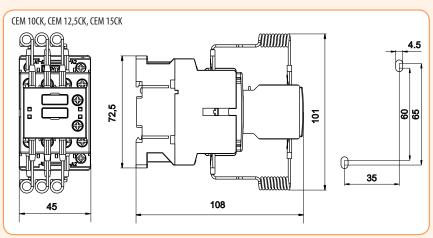
Тип	Код	Номинальная мощность 400/440V [kVAr]	Вспомогательные контакты (в комплекте)	Вес [кг]	Упаковка [шт.]
CEM 2,5CK.01-230V-50Hz*	4643803	2,5	1NC	0,25	1/50
CEM 5CK.01-230V-50Hz*	4643804	5	1NC	0,26	1/50
CEM 7,5CK.00-230V-50Hz	4643805	7,5	-	0,27	1/50
CEM 10CK.02-230V-50Hz	4643806	10	2NC	0,32	1/50
CEM 12,5CK.02-230V-50Hz	4643807	12,5	2NC	0,32	1/50
CEM 15CK.02-230V-50Hz	4643808	15	2NC	0,325	1/50
CEM 20CK.01-230V-50Hz	4643809	20	1NC	0,34	1/50
CEM 25CK.01-230V-50Hz	4643810	25	1NC	0,465	1/45
CEM 30CK.01-230V-50Hz	4643811	30	1NC	0,53	1/23
CEM 40CK.01-230V-50Hz	4643812	40	1NC	0,945	1/23
CEM 50CK.01-230V-50Hz	4643813	50	1NC	0,945	1/23
CEM 60CK.01-230V-50Hz	4643814	60	1NC	0,97	1/23
CEM 70CK.01-230V-50Hz	4643815	70	1NC	1,4	1/10

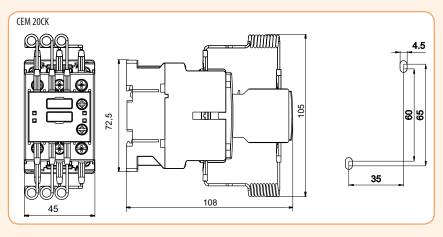
*СЕМ 2,5СК, СЕМ 5СК и СЕМ 7,5СК поставляются без внешнего блока вспомогательных контактов и токоограничивающих элементов

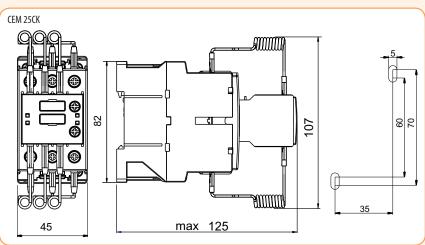

Дополнительный блок-контактов BCMLE11 (боковой)										
Тип	Код	Описание	Совместимость	Вес [кг]	Упаковка [шт.]					
BCMLE11	4643802	1NO + 1NC	CEM 2,5CK70CK	0,025	2/560					

Дополнительный блок-контактов ВСМLЕ11 возможно установить с двух сторон контактора

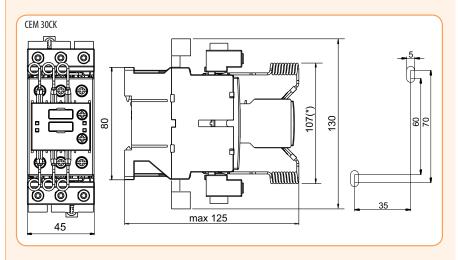


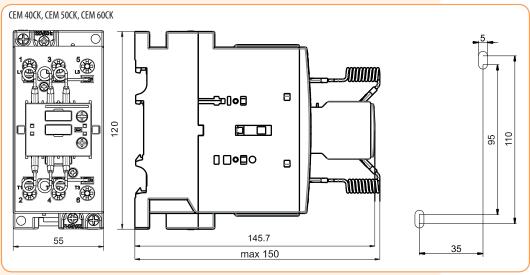

			CEM 2,5CK	CEM 5CK	CEM 7,5CK	CEM 10CK	CEM 12,5CK	CEM 15CK	CEM 20CK	CEM 25CK	CEM 30CK	CEM 40CK	CEM 50CK	CEM 60CK	CEM 70CK
Код			4643803	4643804	4643805	4643806	4643807	4643808	4643809	4643810	4643811	4643812	4643813	4643814	4643815
Мощность	230V	kVAr	1,4	2,8	4	5	6,7	8,5	11	14	20	25	29	32	35
конденсатора	400-440V	kVAr	2,5	5	7,5	10	12,5	15	20	25	30	40	50	60	70
при напряжении 50/60Hz	500-550V	kVAr	3	5,5	9	12,5	15	18	24	30	35	50	60	70	75
	660-690V	kVAr	3,7	7,5	11	15	18	22	30	35	40	58	70	80	90
Номинальный ток le/A	C-6b 400 V	Α	3,6	7,2	11	14	18	22	29	36	44	58	72	87	101
Номинальное напряже	ние изоляции Ui	V					690						10	00	
Рабочий диапазон темі	пературы	°C							- 25 + 55						
Импульсная устойчиво	сть изоляции Uimp	kV							8						
Мощность,	момент замыкания	1/4				62				6	5		155		204
потребляемая	режим удержания	VA	0,	75			0,	75		0,	75		0,6		0,54
катушкой	момент замыкания					7				8	3		12		16
управления, 50/60 Hz	режим удержания	VA					0,3						0,29		0,26
Рабочий диапазон напр	ояжения катушки							(),85 - 1,1 Uı	n					
Степень защиты	·			IP 20											
Предохранитель для	Основная цепь gL/gG	Α	20	25		25	35	50	50	63	80	100	125	160	160
защиты от тока КЗ	Вспомогательная цепь	Α	16	20		16	16	16	16	16	16	16	16	16	16
Количество коммутаци		s/h	24	10			240			120			10	00	
Электрический ресурс		min.	100.000 200.000 150.000						100.000			75.000			
Сечение подключаем	ых проводников														
	многожильный проводник	mm ²													
- силовая цепь	многожильный проводник с наконечником	mm²	1,5	i-6			1,5-6		2,5	-10	6-25	16-	-35		25-50
Тип винта			M4 M5						M6			M8			
Тип шлица			PZ2 Imbus							PZ2		Imbus			
Момент прилагаемого	усилия	Nm			1	,2			1,4	1,6	2,0		3-4		4-4,5
	многожильный проводник	mm ²							1-2,5						
- вспомогательная цепь	многожильный проводник с наконечником	mm²							0,75 - 1,5						
Тип винта									M 3,5						
Тип шлица									PZ2						
Момент прилагаемого	усилия	Nm							0,8						
Условный термичесский ток	Ith; 35°C	А		10					1	6					
	230V	Α					6						1	0	
Номинальный	400V	Α					4							5	
рабочий ток le/AC15	500V	Α					2							4	
	690V	Α					1							2	
Соответствие стандарта								IFC 600	947-1, IEC 6	1947-4					

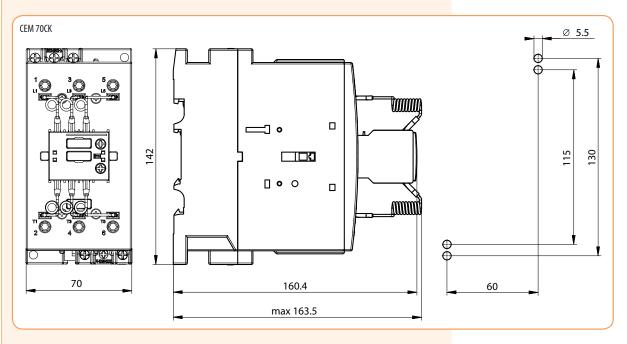

Схемы подключения



Габаритные размеры контакторов СЕМ СК







Контакторы для конденсаторных батарей

Регуляторы реактивной мощности PFC

Особенности:

- простой монтаж и эксплуатация;
- → малые потери (до 0,5 Вт на 1 кВар мощности);
- → Возможность подключения в любой точке электросети;
- контроль температуры конденсаторных батарей;

PFC - 6DA

PFC - 8DB

PFC - 12DB

PFC - 6DB3 / 12DB3

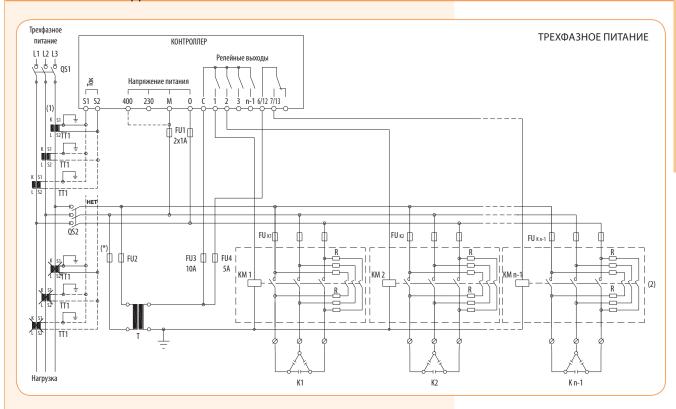
Применение - Для компенсации мощности при разных нагрузках регуляторы PFC отслеживают активную и реактивную составляющую мощности путем измерения мгновенных значений напряжения и тока в электрической сети. На основе этих измерений вычисляется фазовый сдвиг между током и напряжением, и это значение сравнивается с предварительно заданной величиной $\cos \varphi$. В зависимости от фактического отклонения коэффициента мощности контроллер PFC подает команду на управление ступенями конденсаторных батарей с минимальным временем реакции от 4 секунд (программируется).

Технические характеристики:	PFC - 6DA / 8DB / 12DB	PFC - 6DB3 / 12DB3			
Одновременное измерение	по одной фазе	по трем фазам			
Напряжение питания	230 - 415 VAC; +10%-15%; 50 - 60 Hz	230 VAC; +10%-15%; 50 - 60 Hz			
Максимальная потребляемая мощность	6/8 ступеней - 5,8 VA 12 ступеней - 6,1 VA	6 ступеней - 6,0 VA 12 ступеней - 6,5 VA			
Номинальный ток In	5	(A)			
Рабочий диапазон по току	0,125 .	5,5A			
Диапазон измерения напряжения	195 460 VAC				
Диапазон измерения тока	0.125 5.5A				
Регулировка коэффициента мощности	0.85 индукт 0.95 емкостн.	0.85 индукт 0.90 емкостн.			
Релейный выход	8A – 250	VAC (AC1)			
Максимальная нагрузка основных контактов	10 A	12 A			
Максимальное коммутируемое напряжение	250 VAC	230 VAC			
Электрический ресурс	20 x 10 ⁶	циклов			
Механический ресурс	100 x 10	³ циклов			
Соответствие стандартам	IEC 60255-5, IEC 60255-6, IEC 60068-2-61, IEC 60068-2-6, EN50081-1, EN50082-2				
Рабочая температура	-10 / +50 °C				
Степень защиты	IP20				

Тип	Номинальное напряжение Un	Код	In (A)	Количество ступеней	Размер (мм)	Мощность
PFC - 6 DA	230-415 V (+10%; -15%)	4656570		до 6	96x96x74	5.8 VA
PFC - 8 DB		4656572	5 A	до 8	144x144x60	6.1 VA
PFC - 12 DB	(+1070,-1370)	4656571		до 12	144X 144X0U	6.1 VA
PFC - 6 DB3	230V (фаза-нейтраль)	4656575	гл	до 6	144144	6.0 VA
PFC - 12 DB3	(+10%; -15%)	4656576	5 A	до 12	144x144x60	6.5 VA

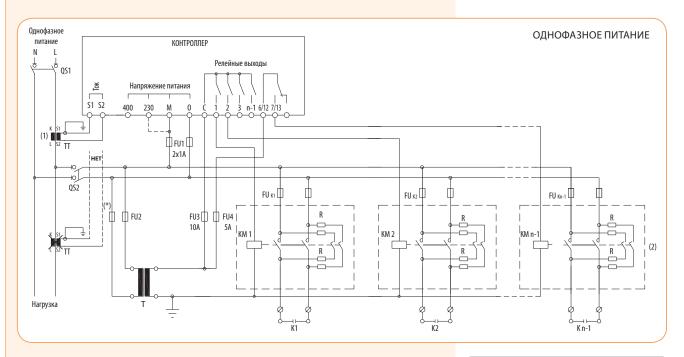
Описание: Контроллеры корректировки коэффициента мощности в низковольтных системах определяют действительное значение $\cos \varphi$ и производят автоматическое подключение или отключение ступеней для достижения требуемого значения коэффициента мощности.

Принцип работы контроллера основан на системе FCP которая позволяет производить мгновенные измерения значений напряжения и тока, обеспечивая оптимальное управление системой компенсации реактивной мощности. При отсутствии необходимости автоматической настройки все параметры могут быть заданы вручную.


Контроллер имеет возможность подключения и программирования внешнего вентилятора для охлаждения конденсаторных батарей, также в нем предусмотрен аварийный сигнал превышения температуры.

<u>Измерения реактивной мощности производится по 4 квадрантам</u>, что обеспечивает максимальную степень компенсации потребляемой энергии. Более подробную информацию смотрите в руководстве по эксплуатации.

CP



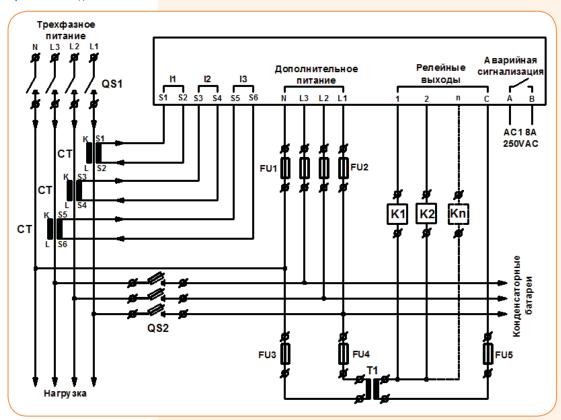
Схемы подключения PFC - 6DA / 8DB / 12DB

ВНИМАНИБШ

Измерительный трансформатор тока TT1 не должен быть подключен к той же фазе, что и регулятор реактивной мощности.

Примечание:

- (1) При неправильном монтаже соз φ не изменяется при переключении конденсаторов. Необходимо изменить подключение трансформатора тока (СТ) выше цепи питания конденсаторных батарей.
- (2) Последний блок контактов.
- (3) Основное меню установки параметров Р.05 (см. руководство пользователя РFC)
- (4) Установка чувствительности трансформатора тока (СТ)


Разделительный трансформатор Т1 используется для: Изолирования вспомогательных цепей контроллера от сети питания. Разделения цепей питания катушек контакторов от сети питания.

^{*} Разделительный трансформатор Т1 не входит в комплект поставки

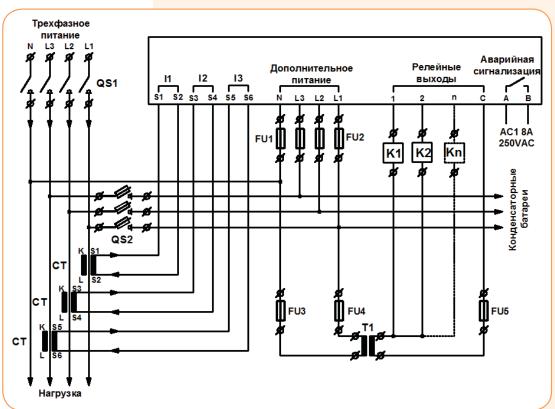


Схема подключения PFC - 6DB3 / 12DB3

Правильное подключение

Неправильное подключение

Регуляторы реактивной мощности PFC RS485

Описание

- В пределах каждого уровня мощности для использования равномерного ресурса конденсаторных банок регулятор использует метод кольцевого переключения, при котором для обеспечения требуемого уровня мощности подключается ступень, которая была дольше всего отключена. Это делается с целью обеспечения оптимального уровня компенсации за один цикл регулирования с минимальным количеством подключенных ступеней.
- Оптимизация количества циклов: Оптимальное регулирование достигается в одном цикле регулирования с минимальным количеством переключаемых ступеней. Контроллер заранее определяет необходимую мощность компенсации и сразу может подключить или отключить несколько ступеней в одном цикле.

МЕТОДЫ РЕГУЛИРОВАНИЯ:

Контроллер коэффициента мощности оцифровывает измеряемое линейное напряжение между двумя фазами и ток в третей фазе. Затем, из этих значений, прибор вычисляет: коэффициент мощности, эффективные значения напряжения и тока, гармоническое искажение по напряжению и току. Расчет необходимой мощности для компенсации производится при помощи установленного требуемого значения коэффициента реактивной мощности в приборе. На основании этих значений регулятор включает или отключает соответствующие конденсаторные ступени.

- APFR (регулирование среднего коэффициента мощности) или мгновенное регулирование соѕф: Контроллер отслеживает средний коэффициент мощности исходя из активной и полной мощности за определенный промежуток времени. Этот метод гарантирует, что контроллер правильно отследит изменение нагрузки с учетом уровня нагрузки и соѕ ф. Благодаря системе APFR, контроллер компенсации реактивной мощности уменьшает количество переключений ступеней, не внося при этом корректировок в настройки контроллера.
- SHTD: Этот метод использует замедление времени реакции в зависимости от величины разности между установленным коэффициентом мощности и измеренным мгновенным значением. За каждую секунду разница во времени по отношению к реакции уменьшается на квадрат разности до 0 (момент реакции).
- Мгновенного изменения коэффициента мощности: Этот метод реагирует на каждое мгновенное изменение коэффициента мощности путем подключения или отключения необходимой ступени конденсаторной установки исходя из наиболее подходящего по мощности шага ступени.

Этот метод используется в основном для динамической системы корректировки коэффициента мощности на базе тиристорных модулей коммутации.

Преимущества:

- контроль параметров: U, I, P, Q, S, $\cos \varphi$, THDU, THDI, нечетных гармоник вплоть до 19-го порядка, температуры
- три метода регулировки (APFR по умолчанию)
- автоматическая или ручная настройка параметров
- автоматическое или ручное определение подключенных ступеней конденсаторов
- универсальный вход для подключения вторичной обмотки т.т. ../1А и ../5А
- внутренний датчик температуры
- разные уровни температуры для управления вентилятором и отключения ступеней установки
- контроль операций переключения и времени работы
- настройка разряда конденсаторов и минимального времени реакции для каждой ступени
- память для минимальных и максимальных значений
- последняя ступень регуляторов может быть использована как аварийный выход
- программируемые выходные контакты аварийной сигнализации, только PFC 12 RS

ETI

Технические характеристики:					
Напряжение питания	400 VAC (+10%, -15%), 50 Hz / 60 Hz				
Потребляемая мощность	<3,2 VA				
Диапазон тока	5mA - 6A				
Точность измерения тока	± 0,2%				
Точность измерения напряжения	± 0,5%				
Точность измерения THDU и THDI	(U>10%UN) ±5% / (I>10%IN) ±5%				
Точность измерения сдвига фаз при I>3%In	± 3° (иначе ±1°)				
Коммутируемая мощность аварийного сигнального выхода	250 V AC / 5 A				
Диапазон настройки коэффициента мощности	0.8 инд. ÷ 0.8 емк.				
Задержка времени при отключении конденсаторных ступеней	5 ÷ 900 сек.				
Время разряда конденсатора	5 ÷ 900 сек.				
Диапазон мощности ступени	999 kVAr инд. ÷ 999 kVAr емк.				
Распознавание конденсаторных ступеней	ручное / автоматическое				
Порт связи	RS485 (Modbus RTU)				
Рабочий диапазон температур	-40°C ÷ +70°C				
Степень защиты	IP20 клеммное подключение / IP54 фронтальная панель				
Глубина	55 мм				
Соответствие стандартам	EN 61010-1, EN50081-1, EN50082-1				

Тип	Количество ступеней	Напряжение питания	Сегментный LED дисплей	Тарифный вход cos1/cos2	Сигнальный выход	Сигнальный выход на последней ступени	Измерение по трем фазам	Порт связи RS 485	Размер передней панели	Отверстие в щите
PFC-6 RS	6	ي				•		•	97х97мм	91х91мм
PFC-8 RS	8	400 V AC	Да			•		•	97х97мм	91х91мм
PFC-12 RS	12	4		•	•			•	144х144мм	138х138мм

Тип	Код	Номинальное напряжение Un	Измерение	Порт связи	Вес (кг)	Упаковка (шт)
PFC-6 RS	4656905				0,65	1
PFC-8 RS	4656906	400 V AC (+10%, -15%)	по одной фазе	RS485	0,65	1
PFC-12 RS	4656907	(+1070,-1370)			1,2	1

Регуляторы реактивной мошности

Контроль повышения температуры

Контроллер обеспечивает возможность выдачи аварийного сигнала при повышении температуры в двух уровнях. Первый уровень обеспечивает вентиляцию шкафа. Второй уровень отключает все ступени конденсаторной установки и выдает аварийный сигнал на дисплей.

Меню Symbol

Каждый параметр в меню мониторинга и обслуживания представлен трех или четырех сегментным символом. Символы являются логическими и обеспечивают пользователю интуитивное понимание параметров измерений и функций, отображаемых на дисплее.

Двухцветная светодиодная индикация

Каждая операция со ступенями конденсаторной установки отображается двухцветным LED на дисплее контроллера. Различные цвета и логические символы позволяют определить состояние работы и настройки каждой ступени.

Последняя ступень аварийного выхода PFC-6 RS, PFC-8 RS

Данные типы регуляторов не имеют независимых аварийных сигнальных выходов, но последняя ступень, может быть использована как аварийный выход. В этом случае она применяется только как аварийный сигнальный выход и не используется для коммутации контакторных ступеней.

Интерфейс RS485

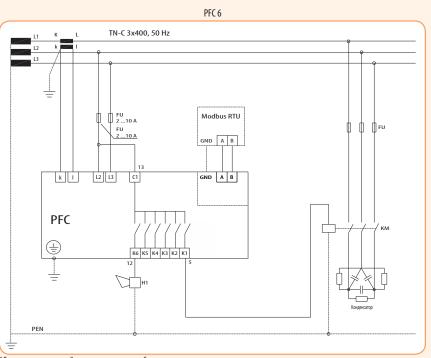
Контроллеры коэффициента реактивной мощности оснащены интерфейсом связи RS485 с протоколом связи Modbus RTU.

Измерение гармоник

Контроллер осуществляет широкий спектр мониторинга электрических параметров сети, таких как U, I, P, Q, S, $\cos \varphi$, THDU, THDI, а также нечетные гармоники U, и I до 19-го порядка.

Декомпенсация

В контроллере предусмотрена функция применения декомпенсирующих (индуктивных реакторов) ступеней при этом ступень может иметь как индуктивный, так и емкостной характер.

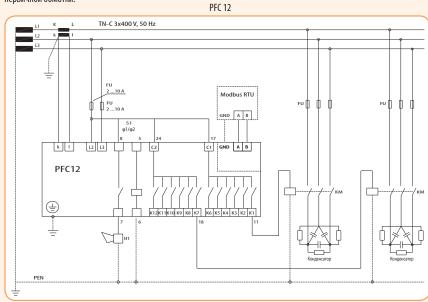

Декомпенсирующие реакторные ступени применяются в двух случаях:

на объектах, где есть только емкостная нагрузка – в таком случае все ступени регулятора работают индуктивными; и на объектах где есть индуктивная и емкостная нагрузки – в таком случае одна ступень может работать индуктивной, а остальные ступени будут емкостными.

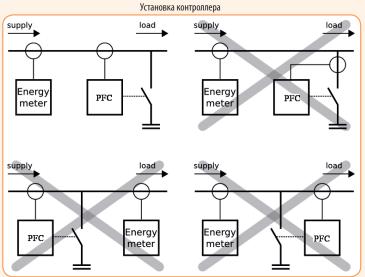
Вход по тарифам, PFC 12 RS

В контролере компенсации реактивной мощности предусмотрена возможность работы по двух тарифных планах $\cos \varphi$. Настройка второго тарифа $\cos \varphi$ осуществляется в сервисном меню контроллера и активизируется подачей питания на вход Tariff.

Схемы подключения


*Ступени одинаковой мощности должны быть подключены подряд.

**Следите за тем, чтобы вторичная обмотка трансформатора тока была закорочена и заземлена при подключенной первичной обмотки.

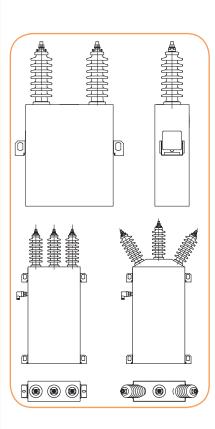


PFC 8 TN-C 3x400 V, 50 Hz FU 2 ...10 A Modbus RTU FU • FU 2 ...10 A GND A B L2 L3 GND A B k I C1 PFC

- *Ступени одинаковой мощности должны быть подключены подряд.
 **Следите за тем, чтобы вторичная обмотка трансформатора тока была закорочена и заземлена при подключенной первичной обмотки.

- *Ступени одинаковой мощности должны быть подключены подряд.
 **Следите за тем, чтобы вторичная обмотка трансформатора тока была закорочена и заземлена при подключенной первичной обмотки.

CP


Высоковольтные силовые конденсаторы KLV

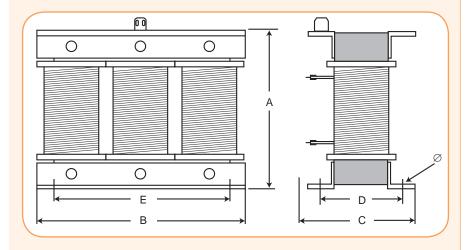
Применение - Конденсаторы КLV разработаны для компенсации реактивной мощности в электрических сетях и промышленных установках. Передовая технология изготовления конденсаторов КLV основана на применении пленочных конденсаторных секций с улучшенными электрическими и механическими соединениями между секциями и пропиткой экологически безопасным изоляционным маслом (не содержащим полихлордифенил). Благодаря высокому начальному напряжению частичных разрядов, конденсаторы КLV пригодны для установки в сетях с наличием высших гармоник. Слабая зависимость изменения емкости от температуры делает их особенно подходящими для установки в схемах фильтров. При необходимости получения номинального напряжения большего значения, чем номинальное напряжение одного конденсатора, блоки объединяются в батареи с помощью последовательного соединения.

Форма заказа	
параметр	описание
Кол-во фаз	1 или 3
Номинальная мощность	kVAr
Номинальное напряжение	V
Номинальная частота	Hz
Допуск емкости	%+%;
Число вводов	1, 2
Установка	внутренняя/внешняя
Уровень изоляции	/кВ (если требуется
уровень изоляции	выше номинального)
Встроенные предохранители	да/нет
Реле давления	да/нет
Контактные зажимы	да/нет

Технические данн	ые:
Диэлектрик:	пленка
Пропитывающая жидкость:	экологически безопасное изоляционное масло, на основе M/DBT (не содержащее полихлордифенил)
Разрядный резистор:	встроенный разрядный резистор снижает напряжение на отключенном конденсаторе с максимального значения номинального напряжения до 75 V за 10 минут (разряд до 50 V за 5 минут — под заказ)
Встроенные предохранители: (устанавливаются под заказ)	В зависимости от номинального напряжения конденсатора и номинальной выходной мощности, высоковольтные силовые конденсаторы KLV имеют различное число последовательно соединенных секций, образующих группы секций, соединенные параллельно. Также могут использоваться внешние предохранители, когда встроенные предохранители не соответствуют более высокому номинальному напряжению или меньшей номинальной выходной мощности конденсатора
Реле давления с крышкой: (устанавливается под заказ)	Используется для защиты конденсаторных блоков и батарей без защиты от асимметрии. В случае повреждения конденсатора внутри корпуса может возникнуть повышенное давление, которое может вызвать разрыв корпуса. Для контроля такого повреждения, используется реле давления. При превышении давления 0,5 бар приводится в действие контакт, не находящийся под напряжением, который используется для отключения поврежденной батареи через выключатель (установленный со стороны потребителя) без выдержки времени
Материал корпуса/ Покрытие:	Корпус конденсатора изготовлен из нержавеющей стали, прогрунтован и покрашен. Для установки в помещении возможно изготовление корпуса из обычной стали, прогрунтованного и окрашенного
Вводы и присоединение:	Контактные зажимы, с возможностью присоединения под любую комбинацию двух проводников от 4 мм² до 50 мм² одножильного провода или многожильного – под заказ
Установка:	Вертикальная или горизонтальная
Номинальная частота	50, 60Нz; Допуск - 5%+ 10%
Средние потери	0,08 - 0,15 W/kVAr
Стандартные уровни изоляции	7,2 - 12 - 17,5 - 24kV
Температурная категория	-40°С до +50°С по IEC
Соответствие стандартам	IEC 60871-1, ANSI/IEEE 18 – 1992, NEMA CP-1, 1988

Фильтрующие дроссели

Применение - Трехфазные дроссели предназначены для работы в составе конденсаторных установок, включаются последовательно с конденсаторами и используются как защитное, фильтрующее устройство от влияния высших гармоник на сеть потребителя и на конденсатор. При повышении частоты приложенного напряжения к конденсатору его сопротивление снижается, поэтому применяются дроссели, которые вместе с конденсатором образуют контур, отстроенный от частоты гармоники и подавляющий ее. Частота резонанса такого контура должна быть ниже частоты самых низших гармоник, присутствующих в электросети. При наличии гармоник с частотами выше, чем частота контура, образованного конденсатором и дросселем, резонанс не возникает.


Стандартные значения коэффициента отстройки составляют 5,67%, 7% и 14% при резонансных частотах 210, 189 и 134 Гц в сетях с номинальной частотой 50Гц.

При таких стандартных значениях величин в трехфазной сети и симметричной нагрузке становится возможным устранить 5-ю (250Гц) и гармоники высших порядков. Это позволяет избежать резонанса между индуктивным сопротивлением и трехфазными конденсаторами, включенными для корректировки коэффициента мощности, и предотвращения перегрузки конденсаторных батарей.

Дроссели оборудованы биметаллическим тепловым реле, которое встроено в центральную обмотку и имеет выводы на отдельные клеммы. Датчик реле срабатывает при температуре выше 90°С.

Технические характеристики:								
Номинальное напряжение	400 V 50 Hz							
Коэффициент фильтрации	5,67 %	7 %	14 %					
Резонансная частота	210 Hz	189 Hz	134 Hz					
Погрешность	± 3%							
Допустимая перегрузка	1,07 x ln							
Линейность	1,60 x ln							
Теплоизоляция		F (155°C)						
Тепловая защита		90℃						
Рабочая температура		45°C						
Номинальное напряжение изоляции	4 kV							
Степень защиты	IP00							
Соответствие стандартам	M IEC-60289; IEC-076							

^{*} Фильтрующие дроссели с коэффициентом фильтрации 12,5% - под заказ

Таблица подбора конденсаторных батарей LPC к фильтрующим дросселям

Фильтруюц	Фильтрующие дроссели 400V-50Hz-5,67%-210Hz (алюминий)									
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы			
HFL 5,67/5 AI	5	4656838	6,12	7,22	3 x 31,28	6,4	2 x LPC 3 kVAr, 460V, 50HZ			
HFL 5,67/10 AI	10	4656839	3,06	14,4	3 x 62,55	7,8	LPC 12,5 kVAr, 460V, 50HZ			
HFL 5,67/12,5 AI	12,5	4656836	2,45	18	3 x 78,19	8	LPC 15 kVAr, 460V, 50HZ			
HFL 5,67/15 AI	15	4656840	2,04	21,7	3 x 93,83	8	LPC 20 kVAr, 480V, 50HZ			
HFL 5,67/20 AI	20	4656841	1,53	28,9	3 x 125,11	14	LPC 25 kVAr, 460V, 50HZ			
HFL 5,67/25 AI	25	4656837	1,22	36,1	3 x 156,39	16,3	LPC 30 kVAr, 460V, 50HZ			
HFL 5,67/30 AI	30	4656842	1,02	43,3	3 x 187,66	25,7	LPC 40 kVAr, 480V, 50HZ			
HFL 5,67/40 AI	40	4656843	0,77	57,7	3 x 250,22	26,1	LPC 50 kVAr, 460V, 50HZ			
HFL 5,67/50 AI	50	4656844	0,61	72,2	3 x 312,77	26,1	LPC 30,8 kVAr, 460V, 50HZ			

Тип	Размеры (мм)									
ІИП	A	В	С	D	E	Ø				
HFL 5,67/5 AI	170	180	80	70	140	9				
HFL 5,67/10 AI	170	180	90	80	140	9				
HFL 5,67/12,5 AI	170	180	90	80	140	9				
HFL 5,67/15 AI	170	180	90	80	140	9				
HFL 5,67/20 AI	220	240	100	90	200	9				
HFL 5,67/25 AI	220	240	110	100	200	9				
HFL 5,67/30 AI	270	300	120	100	200	9				
HFL 5,67/40 AI	270	300	120	100	200	9				
HFL 5,67/50 AI	270	300	120	100	200	9				

Фильтруюц	Фильтрующие дроссели 400V-50Hz-7%-189Hz (алюминий)									
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) I _{eff}	Емкость µF	Вес (кг)	Конденсаторы			
HFL 7/20 AI	20	4656820	1,92	28,9	3 x 123,35	14,5	LPC 25 kVAr, 460V, 50HZ			
HFL 7/25 AI	25	4656821	1,53	36,1	3 x 154,18	17	LPC 30 kVAr, 460V, 50HZ			
HFL 7/30 AI	30	4656822	1,28	43,3	3 x 185,02	26	LPC 40 kVAr, 480V, 50HZ			
HFL 7/40 AI	40	4656823	0,96	57,7	3 x 246,69	26,5	LPC 50 kVAr, 460V, 50HZ			
HFL 7/50 AI	50	4656824	0,77	72,2	3 x 308,36	27	2 x LPC 30.8 kVAr, 460V, 50HZ			

Тип	Размеры (мм)							
IMI	А	В	C	D	E	Ø		
HFL 7/20 AI	220	240	100	90	200	9		
HFL 7/25 AI	220	240	110	100	200	9		
HFL 7/30 AI	270	300	120	100	200	9		
HFL 7/40 AI	270	300	120	100	200	9		
HFL 7/50 AI	270	300	120	100	200	9		

Фильтруюц	Фильтрующие дроссели 400V-50Hz-14%-134Hz (алюминий)							
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы	
HFL 14/20 AI	20	4656830	4,15	28,9	3 x 114,06	27	LPC 25 kVAr, 480V, 50HZ	
HFL 14/25 AI	25	4656831	3,32	36,1	3 x 142,58	27	LPC 30 kVAr, 480V, 50HZ	
HFL 14/30 AI	30	4656832	2,76	43,3	3 x 171,09	44	LPC 40 kVAr, 480V, 50HZ	
HFL 14/40 AI	40	4656833	2,07	57,7	3 x 228,12	44,5	LPC 50 kVAr, 480V, 50HZ	
HFL 14/50 AI	50	4656834	1,66	72,2	3 x 285,15	45	2 x LPC 30 kVAr, 480V, 50HZ	

Тип	Размеры (мм)							
INII	А	В	C	D	E	Ø		
HFL 14/20 AI	270	120	120	100	200	9		
HFL 14/25 AI	270	120	120	100	200	9		
HFL 14/30 AI	320	160	160	135	300	9		
HFL 14/40 AI	320	160	160	135	300	9		
HFL 14/50 AI	320	160	160	135	300	9		

Фильтрующие дроссели 400V-50Hz-7%-189Hz (медь)							
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (A) І _{ет}	Емкость µF	Вес (кг)	Конденсаторы
HFL 7/5 Cu	5	4656800	7,66	7,2	3 x 30,84	7,5	2 x LPC 3 kVAr, 460V, 50HZ
HFL 7/10 Cu	10	4656801	3,83	14,4	3 x 61,67	8,5	LPC 12.5 kVAr, 460V, 50HZ
HFL 7/12,5 Cu	12,5	4656802	3,07	18	3 x 77,09	9	LPC 15 kVAr, 460V, 50HZ
HFL 7/15 Cu	15	4656803	2,56	21,7	3 x 92,51	9,5	LPC 20 kVAr, 480V, 50HZ
HFL 7/20 Cu	20	4656804	1,92	28,9	3 x 123,35	16	LPC 25 kVAr, 460V, 50HZ
HFL 7/25 Cu	25	4656805	1,53	36,1	3 x 154,18	16,5	LPC 30 kVAr, 460V, 50HZ
HFL 7/30 Cu	30	4656806	1,28	43,3	3 x 185,02	17,5	LPC 40 kVAr, 480V, 50HZ
HFL 7/40 Cu	40	4656807	0,96	57,7	3 x 246,69	28,5	LPC 50 kVAr, 460V, 50HZ
HFL 7/50 Cu	50	4656808	0,77	72,2	3 x 308,36	30	2 x LPC 30.8 kVAr, 460V, 50HZ
HFL 7/100 Cu	100	4656809	0,38	144	3 x 616,73	43	4 x LPC 30.8 kVAr, 460V, 50HZ

Тип		Размеры (мм)							
IMI	Α	В	С	D	E	Ø			
HFL 7/5 Cu	170	180	80	70	140	9			
HFL 7/10 Cu	170	180	90	80	140	9			
HFL 7/12,5 Cu	170	180	90	80	140	9			
HFL 7/15 Cu	170	180	90	80	140	9			
HFL 7/20 Cu	220	240	100	90	200	9			
HFL 7/25 Cu	220	240	100	90	200	9			
HFL 7/30 Cu	220	240	100	90	200	9			
HFL 7/40 Cu	270	300	120	100	200	9			
HFL 7/50 Cu	270	300	120	100	200	9			
HFL 7/100 Cu	320	360	150	125	300	9			

Фильтрующие дроссели 400V-50Hz-14%-134Hz (медь)							
Тип	Номинальная мощность (kVAr)	Код	Индуктивность (mH)	Ном. ток (А) І _{ен}	Емкость µF	Вес (кг)	Конденсаторы
HFL 14/5 Cu	5	4656810	16,58	7,2	3 x 28,52	15	2 x LPC 3 kVAr, 480V, 50HZ
HFL 14/10 Cu	10	4656811	8,29	14,4	3 x 57,03	15	LPC 15 kVAr, 525V, 50HZ
HFL 14/12,5 Cu	12,5	4656812	6,63	18	3 x 71,29	16	LPC 15 kVAr, 480V, 50HZ
HFL 14/15 Cu	15	4656813	5,53	21,7	3 x 85,55	16	LPC 20 kVAr, 480V, 50HZ
HFL 14/20 Cu	20	4656814	4,15	28,9	3 x 114,06	19,5	LPC 25 kVAr, 480V, 50HZ
HFL 14/25 Cu	25	4656815	3,32	36,1	3 x 142,58	20,5	LPC 30 kVAr, 480V, 50HZ
HFL 14/30 Cu	30	4656816	2,76	43,3	3 x 171,09	31	LPC 40 kVAr, 480V, 50HZ
HFL 14/40 Cu	40	4656817	2,07	57,7	3 x 228,12	34,5	LPC 50 kVAr, 480V, 50HZ
HFL 14/50 Cu	50	4656818	1,66	72,2	3 x 285,15	37	2 x LPC 30 kVAr, 480V, 50HZ

Тип	Размеры (мм)							
INII	A	В	С	D	E	Ø		
HFL 14/5 Cu	220	240	100	90	200	9		
HFL 14/10 Cu	220	240	100	90	200	9		
HFL 14/12,5 Cu	220	240	100	90	200	9		
HFL 14/15 Cu	220	240	100	90	200	9		
HFL 14/20 Cu	220	240	110	100	200	9		
HFL 14/25 Cu	220	240	110	100	200	9		
HFL 14/30 Cu	270	300	120	100	200	9		
HFL 14/40 Cu	270	300	130	110	200	9		
HFL 14/50 Cu	270	300	130	110	200	9		

Для заметок